Systematic description of molecular deformations with Cremer–Pople puckering and deformation coordinates utilizing analytic derivatives: Applied to cycloheptane, cyclooctane, and cyclo[18]carbon

Cite as: J. Chem. Phys. 152, 154107 (2020); https://doi.org/10.1063/1.5144278
Submitted: 30 December 2019. Accepted: 21 February 2020. Published Online: 20 April 2020

Wenli Zou, Yunwen Tao, and Elfi Kraka

ARTICLES YOU MAY BE INTERESTED IN

Recent developments in the general atomic and molecular electronic structure system
The Journal of Chemical Physics 152, 154102 (2020); https://doi.org/10.1063/5.0005188

A new diabatization scheme for direct quantum dynamics: Procrustes diabatization
The Journal of Chemical Physics 152, 154108 (2020); https://doi.org/10.1063/5.0003254

Variational and diffusion quantum Monte Carlo calculations with the CASINO code
The Journal of Chemical Physics 152, 154106 (2020); https://doi.org/10.1063/1.5144288
Systematic description of molecular deformations with Cremer–Pople puckering and deformation coordinates utilizing analytic derivatives: Applied to cycloheptane, cyclooctane, and cyclo[18]carbon

Cite as: J. Chem. Phys. 152, 154107 (2020); doi: 10.1063/1.5144278
Submitted: 30 December 2019 • Accepted: 21 February 2020 • Published Online: 20 April 2020

Wenli Zou,1,Yunwen Tao,1 and Elfi Kraka1,a)

AFFILIATIONS
1Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275-0314, USA
2Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710127, People’s Republic of China

a)Author to whom correspondence should be addressed: ekraka@smu.com

ABSTRACT
The conformational properties of ring compounds such as cycloalkanes determine to a large extent their stability and reactivity. Therefore, the investigation of conformational processes such as ring inversion and/or ring pseudorotation has attracted a lot of attention over the past decades. An in-depth conformational analysis of ring compounds requires mapping the relevant parts of the conformational energy surface at stationary and also at non-stationary points. However, the latter is not feasible by a description of the ring with Cartesian or internal coordinates. We provide in this work, a solution to this problem by introducing a new coordinate system based on the Cremer–Pople puckering and deformation coordinates. Furthermore, analytic first- and second-order derivatives of puckering and deformation coordinates, i.e., B-matrices and D-tensors, were developed simplifying geometry optimization and frequency calculations. The new coordinate system is applied to map the potential energy surfaces and reaction paths of cycloheptane (C₇H₁₄), cyclooctane (C₈H₁₆), and cyclo[18]carbon (C₁₈) at the quantum chemical level and to determine for the first time all stationary points of these ring compounds in a systematic way.

I. INTRODUCTION
Theoretical chemists generally prefer the use of Cartesian coordinates when solving the Schrödinger or Dirac equation in some approximate way. This results from the fact that the electron integrals and their derivatives can be efficiently calculated in terms of Cartesian coordinates and that there is always a unique set of 3N Cartesian Coordinates for a system being composed of N atoms. On the other hand, experimentally oriented chemists generally prefer to describe molecular geometries in terms of internal coordinates, such as bond lengths, bond angles, and dihedral angles, because they are more intuitive. However, there is no unique set of (3N – N₀) internal coordinates, with N₀ = 6 for nonlinear and 5 for linear polyatomic molecules. This often leads to the question, which internal coordinates are best suited for the description of the molecular system under consideration. The basic equation of vibrational spectroscopy is defined in Cartesian coordinates. However, it can be extended to internal coordinates using the well-known Wilson B-matrix formalism, which connects internal or other coordinates (e.g., symmetry coordinates) to Cartesian coordinates via the first
order derivatives of the internal coordinates with regard to Cartesian coordinates. This formalism is at the heart of modern vibrational spectroscopy and has been realized in an increasing number of algorithms, such as the natural extension reference frame algorithm or even involving machine learning procedures, just to name a few.

Despite their popularity, both Cartesian and internal coordinates are no longer an optimal choice for the description of reacting molecules. As the atoms of a molecule move on curved paths in such a situation, the dynamics of a molecule is better described in terms of curvilinear coordinates. In computational chemistry, the deficiency of internal coordinates can be alleviated to some extent by using redundant sets of internal coordinates, which help us to at least approximately describe the curved paths of the atoms during geometry optimization. However, these approximations tend to fail for the description of vibrating molecules, and for the description of ring systems and their conformational changes, or in more general terms, when a dynamic process of a molecule has to be described in a precisely defined space. For example, the conformational space of a puckered N-membered ring is spanned by N − 3 coordinates, the Jahn–Teller surface for bond pseudorotation by 2N − 3 coordinates, which contains N − 2 two-dimensional subspaces, the space of the Berry pseudorotation of an AB system is 2-dimensional as well as that of the corresponding turnstile pseudorotation. In all these cases, it is not clear which internal coordinates should be used to determine the corresponding conformational energy surface (CES). The geometry of a puckered N-ring might be described by N ring bonds, N − 3 internal ring angles, and N − 3 dihedral angles. Since there is no unique way of selecting N − 3 angles out of a set of N possible angles, the question which is the best set of internal coordinates to be used for specifying the geometry of a puckered N-ring cannot be answered. The stationary points on the CES can be determined using redundant internal coordinates. However, in order to map the relevant parts of the CES, which describe conformational processes such as ring inversion and/or ring pseudorotation with quantum chemical means, one has to investigate also conformational states at non-stationary points of the CES. This is not feasible by the description of the ring with Cartesian or internal coordinates. A solution to this problem is provided by using the Cremer–Pople puckering coordinates that specify the puckering of an N-ring by N − 3 uniquely defined puckering coordinates that split up into (N − 3)/2 puckering amplitude–pseudorotation phase angle pairs \(q_0, \phi_0 \) with \(n = 2, \ldots, (N - 1)/2 \) for N being odd and \(n = 2, \ldots, (N - 2)/2 \) and a single puckering amplitude \(q_{N/2} \) describing crown-puckering for N being even. Using N bond lengths, N − 3 bond angles, and the N − 3 puckering coordinates any conformer of an N-ring located at a non-stationary point of the CES can be described by a constrained geometry optimization. The advantages of describing ring pseudorotation and ring inversion with the help of Cremer–Pople puckering coordinates are amply documented in the literature.

There remains still some arbitrariness when selecting the N bond lengths and N − 3 bond angles complementing the N − 3 puckering coordinates. This arbitrariness vanishes when complementing the puckering coordinates by a set of 2N − 3 deformation coordinates. These coordinates specify the geometry of the planar ring form in terms of deformation amplitudes \(t_a \) and deformation phase angles \(\tau_n \) with \(n = 1, \ldots, (N - 2) \) for N odd or even and a single ring radius \(R = R_0 + t_0 \) changing from the value \(R_0 \) for a regular N-membered polygon (N-gon) with \(D_{Nh} \) symmetry upon a breathing deformation of the N-gon with amplitude \(t_0 \). Using N − 3 puckering and 2N − 3 deformation coordinates, which we will call ring puckering and deformation (RPD) coordinates in the following, the geometry of any planar or puckered N-ring can be uniquely defined, which is of outmost relevance for the determination of the geometry of specified puckers and/or deformations, the analysis of puckers and deformation in substituted N-rings, and the investigation of dynamic processes such as ring inversion, ring pseudorotation, bond pseudorotation in Jahn–Teller systems, bond shifting in annulenes, etc.

The manuscript is structured as follows: In Sec. II, we introduce the theory of RPD coordinates for any N-ring system, including analytic first and second derivatives. The implementation of RPD coordinates is discussed in Sec. III. In Sec. IV, we apply our new coordinates to describe the puckering of cycloheptane and cyclooctane as representative examples for odd and even-numbered N-rings, respectively, and also to explore the deformation of the recently synthesized cyclo[18]carbon. Conclusions, including a summary of the advantages of using RPD coordinates, are drawn in Sec. V.

II. THEORY

A. RPD coordinates

The coordinates of an N-ring can be defined with regard to an arbitrary orientation of the coordinate system. However, for the calculation of the puckering and deformation coordinates, a special orientation (called “standard orientation”) has to be adopted. This is defined by using the xy-plane as the mean plane of the N-ring and defining the norm to the mean plane as the \(z \)-axis (unit vector \(e_z \)). The mean plane contains the planar reference ring of the puckered N-ring obtained by setting all puckering amplitudes \(q_n = 0 \). The geometrical center of the planar reference ring is taken as the origin of the Cartesian coordinate system and atom 1 of the planar reference ring is positioned on the negative x-axis in the 9 o’clock position.

In the following, we will use the letter of the Greek alphabet for atomic numbers in the clockwise direction, including (1) atomic number \(a = 1, \ldots, N \) in an arbitrary initial orientation, (2) atomic number \(b = 1, \ldots, N \) in the standard orientation of RPD coordinates, and (3) \(y \equiv b - 1 \). When needed, \(r_i^a \) (\(i = 1, 2, \) and 3 for \(x, y, \) and \(z \)) will be used for the Cartesian coordinates \((x_a, y_a, z_a) \equiv r_a \) of atom \(a \), and \(r_i^b \) (\(k = 1, 2, \) and 3 for \(x, y, \) and \(z \)) for the Cartesian coordinates \((x_b, y_b, z_b) \equiv r_b \) of atom \(b \), respectively.

The geometrical center of the N-ring being the origin of the Cartesian coordinate system is imposed by

\[
\sum_a r_a^i = 0 \quad (1)
\]

and the mean plane is determined with the help of two auxiliary vectors \(R' \) and \(R'' \) that span the xy-plane

\[
R' = \sum_i^a r_a \sin \zeta_a \quad (2)
\]

\[
R'' = \sum_i^a r_a \cos \zeta_a \quad (3)
\]
where

\[\zeta_n = \frac{2\pi(n - 1)}{N}. \]

The unit vector in the z-direction (normal to the mean plane), \(\varepsilon_z \), is calculated as

\[\varepsilon_z = \frac{R' \times R''}{|R' \times R''|}. \]

and for x- and y-components, the unit vectors \(\varepsilon_x \) and \(\varepsilon_y \) may be determined by

\[\varepsilon_x = \frac{\varepsilon_z (r_1^0, \varepsilon_z) - r_1^0}{|\varepsilon_z (r_1^0, \varepsilon_z) - r_1^0|} = \frac{R'' + \varepsilon_z \times R'}{|R'' + \varepsilon_z \times R'|} = u, \]

and \(\varepsilon_y = \varepsilon_z \times \varepsilon_x \), where \(r_1^0 \) is the position of the first atom in the reference N-gon (in standard orientation),

\[r_1 = \frac{1}{N} \sum_{\beta} C^h \varepsilon_{\beta}, \]

and \(C^h \) describes counter-clockwise rotation by \(\eta_y \equiv \eta_y^{(0)} = 2\pi y/N \) [cf. Eq. (19)] around \(\varepsilon_z \).

\[C^h \varepsilon_{\beta} = r_{\beta} \cos \eta_y + \varepsilon_z \sin \eta_y \varepsilon_{\beta} + \varepsilon_z (r_{\beta} \times \varepsilon_z) (1 - \cos \eta_y). \]

The above three unit vectors \(\varepsilon_x, \varepsilon_y, \) and \(\varepsilon_z \) determine a unique standard orientation, and the corresponding Cartesian coordinates can be computed by

\[r_1^h = r_{\beta} + \varepsilon_{\beta} (r_{\beta} \times \varepsilon_{\beta}). \]

Hence, for any puckered ring, the choice of the origin and the mean plane impose

\[\sum_{\beta} r_{\beta}^h = 0 \]

and

\[\sum_{\beta} z_{\beta} \cos \zeta_{\beta} = 0, \]

\[\sum_{\beta} z_{\beta} \sin \zeta_{\beta} = 0. \]

The puckering coordinates are defined by

\[q_n \cos \phi_\beta = \sqrt{\frac{2}{N}} \sum_{\beta} z_{\beta} \cos \omega_y^{(n)}, \]

\[q_n \sin \phi_\beta = -\sqrt{\frac{2}{N}} \sum_{\beta} z_{\beta} \sin \omega_y^{(n)}, \]

with

\[\omega_y^{(n)} = \frac{2\pi n y}{N}, \]

for \(n = 2, \ldots, N/2 - 1 \) (N even) or \(n = 2, \ldots, (N - 1)/2 \) (N odd). For even N, an additional ring puckering amplitude describing crown puckering is given by

\[q_{N/2} = \sqrt{\frac{1}{N}} \sum_{\beta} z_{\beta} \cos (\pi n) = \sqrt{\frac{1}{N}} \sum_{\beta} (1)^{n/2} z_{\beta}. \]

The deformation coordinates of a planar N-ring are defined by Eqs. (17) and (18)\(^2\)

\[t_\alpha \cos \tau_\alpha = \frac{1}{N} \sum_{\beta} (x_\beta \cos \eta_\beta^{(n)} - y_\beta \sin \eta_\beta^{(n)}), \]

\[t_\alpha \sin \tau_\alpha = \frac{1}{N} \sum_{\beta} (x_\beta \sin \eta_\beta^{(n)} + y_\beta \cos \eta_\beta^{(n)}), \]

with

\[\eta_\beta^{(n)} = \frac{2\pi(n + 1) y}{N}, \]

where \(n = 0, \ldots, N - 2 \) but \(t_0 \) (i.e., radius \(R_t \) also called breathing amplitude) does not have a phase angle \(\tau_0 \).

Using the above formulas, the puckering and deformation coordinates can be determined from the Cartesian coordinates of an arbitrary ring molecule only if the atoms are correctly ordered. For a given set of RPD coordinates, the corresponding Cartesian coordinates can be extracted according to

\[x_\beta = -R \cos \eta_\beta^{(0)} + \sum_{\alpha=1}^{N-2} t_\alpha \cos (\tau_\alpha - \eta_\beta^{(0)}), \]

\[y_\beta = R \sin \eta_\beta^{(0)} + \sum_{\alpha=1}^{N-2} t_\alpha \sin (\tau_\alpha - \eta_\beta^{(0)}). \]

The puckering and deformation coordinates can be employed by the generalization of Eqs. (20)–(22), i.e., \(\{f_{l_1}, f_{l_2}, \tau_1, \tau_2, \phi_0, \phi_1, \phi_2\} \) for \(\bar{T}_l \) or \(\mathcal{T}_y \), \(\{f_q, f_{q_0}\} \) for \(\mathcal{R}_z \), \(\{q_1, \phi_1 = 0, \phi_2 = \pi/2\} \) for \(\mathcal{R}_x \) or \(\mathcal{R}_y \), and \(\{q_0, \phi_0 = 0\} \) for \(\mathcal{T}_z \) whereas, \(\{q_0, \phi_0 = \pi/2\} \) does not change the geometry.

B. First derivatives of RPD coordinates

The equilibrium geometry of an N-ring corresponds to that point on the CES, for which all internal coordinate forces \(f_q \) (q: bond lengths, bond angles, and dihedral angles) vanish. Accurate geometry optimizations are based on the determination of the analytic energy gradient that collects all forces \(f_q \). Analytical energy gradients with regard to Cartesian coordinates \(r_\beta^h \) are available for most quantum chemical methods. The transformation of Cartesian coordinates \(r_\beta^h \) and Cartesian coordinate forces \(f_q \) into internal coordinates \(q \) and internal coordinate forces \(f_q \) respectively, can be accomplished via the use of the Wilson B-matrix.\(^3\) The infinitesimal displacements
Equations (29–35) define the first term on the right-hand-side (rhs) in Eq. (28) for RPD coordinates, whereas the second term may be calculated by derivation of Eq. (9), leading to

\[
\frac{\partial \mathbf{a}}{\partial \mathbf{r}_a} = \left(\begin{array}{c} \mathbf{e}_z \cdot \mathbf{I} \partial \mathbf{e}_z / \partial \mathbf{r}_a \end{array} \right),
\]

with \(\mathbf{I} \) being the 3 \(\times \) 3 identity matrix and

\[
\frac{\partial \mathbf{e}_z}{\partial \mathbf{r}_a} = \frac{1}{|\mathbf{R}' \times \mathbf{R}'|} \left[\mathbf{a}'' \sin \zeta_a - \mathbf{a}' \cos \zeta_a \right],
\]

where \(\mathbf{a} = \mathbf{I} \times \mathbf{r} - \mathbf{e}_z (\mathbf{I} \times \mathbf{r}_z), \)

with \(\mathbf{a} = \mathbf{a}' \) or \(\mathbf{a}'' \) and \(\mathbf{R} = \mathbf{R}' \) or \(\mathbf{R}'' \), and

\[
\mathbf{I} \times \mathbf{R} = \left[\begin{array}{ccc} 0 & R_z & -R_y \\ -R_z & 0 & R_x \\ R_y & -R_x & 0 \end{array} \right].
\]
The above equations provide all necessary formulas for constituting the B-matrix of a ring molecule.

C. Second derivatives of RPD coordinates

Using the B-matrix in terms of RPD coordinates as described in Subsection II B, geometry optimization in terms of RPD coordinates is principally possible. However, in some advanced optimization methods like quasi-Newton and Newton–Raphson Schemes, a transformation of Cartesian Hessians F_i into internal coordinate Hessians F_q is necessary.12,15

$$F_q = A^T F A - \sum_n g_{kn} A^T D_n A.$$ \hspace{1cm} (46)

In addition to the inverse of Wilson’s B-matrix (A), a D-tensor of B derivatives (D) is also involved in Eq. (46), which is also called B' or C in the literature.13,14 The second derivatives of RPD coordinates ξ_n with regard to Cartesian coordinates r_n are given by

$$D_{\alpha\beta}(\xi_n, r_n) = \frac{\partial^2 \xi_n}{\partial r_\alpha \partial r_\beta} = \sum_{\beta, \gamma, \delta} \frac{\partial^2 \xi_n}{\partial r_\beta \partial r_\gamma} \frac{\partial r_\gamma}{\partial r_\alpha} \frac{\partial r_\delta}{\partial r_\beta} + \sum_{\beta, \delta} \frac{\partial^2 \xi_n}{\partial r_\beta \partial r_\delta} \frac{\partial r_\delta}{\partial r_\alpha} + \frac{\partial^2 \xi_n}{\partial r_\alpha \partial r_\gamma} \frac{\partial r_\gamma}{\partial r_\beta} \frac{\partial r_\delta}{\partial r_\delta}.$$ \hspace{1cm} (47)

Nine types of second derivatives $\partial^2 \xi_n / \partial r_\alpha \partial r_\beta$ in Eq. (47) have to be obtained to derive the D-tensor being necessary for the transformation from Cartesian to RPD coordinates. For the ring puckering coordinates $\{q_n, \phi_n\}$ these are

$$\frac{\partial^2 q_n}{\partial r_\alpha \partial r_\beta} = \frac{2}{N_\alpha} \sin((\omega'(\alpha) + \phi_n) \sin(\omega'(\alpha) + \phi_n)), \hspace{1cm} (48)$$

$$\frac{\partial^2 \phi_n}{\partial r_\alpha \partial r_\beta} = \frac{2}{N_\alpha} \sin(\omega'(\alpha) + \omega'(\alpha) + 2\phi_n), \hspace{1cm} (49)$$

where $\omega'(\alpha)$ has been defined in Eq. (15). For $n\neq N/2$ of even N-membered ring, its D-tensor is always zero.

For the planar deformation coordinates except for $n = 0$, the corresponding second derivatives are

$$\frac{\partial^2 t_n}{\partial x_\alpha \partial x_\beta} = \frac{1}{N^2 t_n} \sin(t_n - \eta'(\alpha)) \sin(t_n - \eta'(\alpha)), \hspace{1cm} (50)$$

$$\frac{\partial^2 t_n}{\partial x_\alpha \partial y_\beta} = -\frac{1}{N^2 t_n} \sin(t_n - \eta'(\alpha)) \cos(t_n - \eta'(\alpha)), \hspace{1cm} (51)$$

$$\frac{\partial^2 t_n}{\partial y_\alpha \partial y_\beta} = \frac{1}{N^2 t_n} \cos(t_n - \eta'(\alpha)) \cos(t_n - \eta'(\alpha)), \hspace{1cm} (52)$$

$$\frac{\partial^2 t_n}{\partial x_\alpha \partial z_\beta} = \frac{1}{N^2 t_n} \sin(2t_n - \eta'(\alpha) - \eta'(\alpha)), \hspace{1cm} (53)$$

$$\frac{\partial^2 t_n}{\partial y_\alpha \partial z_\beta} = -\frac{1}{N^2 t_n} \cos(2t_n - \eta'(\alpha) - \eta'(\alpha)), \hspace{1cm} (54)$$

$$\frac{\partial^2 t_n}{\partial z_\alpha \partial z_\beta} = -\frac{1}{N^2 t_n} \sin(2t_n - \eta'(\alpha) - \eta'(\alpha)). \hspace{1cm} (55)$$

For small q_n or t_n, Eqs. 48 and 49 or Eqs. 50–55 become singular and can be set to zero.

These derivatives have to be augmented by Eq. (56) for the ring radius $R = r_0$

$$\frac{\partial^2 R}{\partial r_\alpha \partial r_\beta} = \frac{1}{N^2 R} e^2 - \frac{1}{N^4 R^3} \left(\sum_{\beta} e^2 - \frac{1}{r_{\beta}} \frac{\partial^2}{\partial r_\alpha \partial r_\beta} r_{\beta} \right) \delta_{\alpha \beta} + \left(\sum_{\beta} R^2 - \frac{1}{r_{\beta}} \frac{\partial^2}{\partial r_\alpha \partial r_\beta} r_{\beta} \right). \hspace{1cm} (56)$$

The second sum on rhs of Eq. (47) contains the terms

$$\frac{\partial^2 \delta^2}{\partial r_\alpha \partial r_\beta} = \left(\frac{\partial e^2}{\partial r_\alpha} \right) \delta_{\alpha \beta} + \left(\frac{\partial e^2}{\partial r_\alpha} \right) \delta_{\alpha \beta} + \left(\frac{\partial e^2}{\partial r_\alpha} \right) \delta_{\alpha \beta} + \left(\frac{\partial e^2}{\partial r_\alpha} \right) \delta_{\alpha \beta}.$$ \hspace{1cm} (57)

where the derivatives $\partial e / \partial r_\beta$ have been given in Eqs. (38), (41) and (45). Now only $\partial^2 e / \partial r_\beta \partial r_\beta$ in Eq. (57) has to be derived further

$$\frac{\partial^2 e_\alpha}{\partial r_\alpha \partial r_\beta} = \frac{1}{|\alpha|} \left[\left(e_\alpha - e_\beta \right) \frac{\partial e_\alpha}{\partial r_\alpha} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} \right]. \hspace{1cm} (58)$$

$$\frac{\partial^2 e_\alpha}{\partial r_\alpha \partial r_\beta} = \frac{1}{|\alpha|} \left[\left(e_\alpha - e_\beta \right) \frac{\partial e_\alpha}{\partial r_\alpha} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} \right]. \hspace{1cm} (59)$$

$$\frac{\partial^2 e_\alpha}{\partial r_\alpha \partial r_\beta} = \frac{1}{|\alpha|} \left[\left(e_\alpha - e_\beta \right) \frac{\partial e_\alpha}{\partial r_\alpha} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} - e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} \right]. \hspace{1cm} (60)$$

where

$$\frac{\partial^2 e_\alpha}{\partial r_\alpha \partial r_\beta} = \frac{\partial e_\alpha^2}{\partial r_\alpha \partial r_\beta} e_\beta + e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta} + e_\alpha e_\beta \frac{\partial e_\alpha}{\partial r_\beta}, \hspace{1cm} (61)$$

$$a_n = I \times R' \sin \eta_n - I \times R' \cos \eta_n, \hspace{1cm} (62)$$

$$c_{\alpha\beta} = \frac{\partial e_\alpha}{\partial r_n} \times I \sin \eta_n, \hspace{1cm} (63)$$

and u has been defined in Eq. (6).

III. IMPLEMENTATION

The RPD coordinates and their derivatives have been programmed as a standalone program called RING in Fortran90, which is freely available via our CATCO web page http://smu.edu/catco/. The geometry optimization procedure in RPD coordinates for ring atoms and Z-matrix coordinates for substituents was implemented into the COLOGNE2019 program16 through an integrated RING interface. The following two problems may be encountered.
During geometry optimization, \(q_n \) or \(t_n \) often becomes negative, which may be converted to a positive one according to \(\{ q_n, \phi_n \} = \{ - q_n, \phi_n \pm \pi \} \) and \(\{ t_n, \tau_n \} = \{ - t_n, \tau_n \pm \pi \} \). This conversion is implemented only after the optimization procedure when printing results; it is not performed inside the optimization procedure since it may interfere with the structural extrapolation algorithms. The \(q_{N/2} \) mode has no phase angle, and therefore both positive and negative values are possible.

- Substituent related bond angles may be difficult to define by regular Z-matrix coordinates due to the use of deformation coordinates. In Fig. 1, for example, five carbon atoms in planar \(\text{C}_5\text{H}_5 \) with \(C_{2v} \) symmetry have been defined by RPD coordinates, and then the Z-matrix coordinates of H1 cannot be defined since \(\angle \text{H}_1-\text{C}_1-\text{C}_2 = \angle \text{H}_1-\text{C}_1-\text{C}_5 = 180^\circ - \frac{1}{2} \angle \text{C}_2-\text{C}_1-\text{C}_5 \), where \(\angle \text{C}_2-\text{C}_1-\text{C}_5 \) is not known. For this purpose, we designed a special indicator for the Z-matrix format, which specifies a dummy atom X1 at the midpoint between C2 and C5. Then the second dummy atom X2 in the same plane is defined by \(\angle \text{X}_1-\text{C}_1-\text{X}_2 = 90^\circ \). With the help of X1 and X2, H1 may be easily specified in Z-matrix coordinates.

For the identification of the position of a given form in the \((N - 3)\)-dimensional puckering space, besides hypercylindrical coordinates \(\{ q_n, \phi_n \} \), hyperspherical coordinates \(\{ Q, \theta_n, \phi_n \} \) may also be used. For an N-ring with \(N_0 = N/2 \) (N even) or \((N - 1)/2 \) (N odd), these coordinates are defined as

\[
Q = \sqrt{\sum_{n=2}^{N_0} q_n^2}.
\]

Using the symbol \(s_n \) \((n = 2, 3, \ldots, N_q - 1) \) for the total puckering amplitude in a subspace,

\[
s_n = \sqrt{Q^2 - \sum_{i=2}^{n-1} t_i^2} = \sqrt{\sum_{i=n}^{N} q_i^2},
\]

a hyperspherical angle \(\theta_n \) can be obtained according to

\[
\theta_n = \frac{\pi}{2} - \arctan\left(\frac{s_n}{q_n}\right).
\]

Therefore, for a given 8-ring form, the relative position between the \(\{ q_2, \phi_2 \} \) space and the 1D \(q_4 \) space is determined by \(\theta_2 \), and that between the \(\{ q_3, \phi_3 \} \) space and the \(q_4 \) space by \(\theta_3 \).

Similarly, one may define a total deformation amplitude

\[
T = \sqrt{\sum_{n=1}^{N-2} t_n^2}
\]

and the corresponding hyperspherical angle \(\gamma_n \) for planar deformation coordinates to form hyperspherical coordinates \(\{ T, \gamma_n, \tau_n \} \).

Test calculations were carried out for 5-, 6-, 7-, and 8-membered rings. Optimized amplitudes obtained via both analytical and numerical derivatives were in good agreement within \(10^{-5} \) atomic units. Since 5- and 6-membered rings have been well studied in the literature, only 7- and 8-membered rings are discussed in this paper. For the purpose of demonstrating the advantages of using RPD coordinates, cycloheptane (\(\text{C}_7\text{H}_8 \)) and cyclooctane (\(\text{C}_8\text{H}_{16} \)), were chosen as examples for odd and even N-rings, respectively. In this work, we focused on the puckering coordinates of cycloheptane and cyclooctane, since \(Q \gg T \) in their conformers and deformation coordinates of planar cyclo[18]carbon (\(\text{C}_{18} \)), whereas the applications of RPD coordinates for smaller ring systems can be found in our early publications about puckering\(^{23,30,41,51} \) and deformation coordinates.\(^{23,40} \)

For cycloheptane and cyclooctane, geometry optimization and frequency calculations were carried out in Cartesian coordinates at the second order Möller–Plesset perturbation theory (MP2) level with Dunning’s cc-pVTZ basis set,\(^{42} \) whereas the smaller cc-pVDZ basis set was used for scanning the potential energy surface (PES) or for exploring the potential energy curve (PEC) by constrained optimization in RPD coordinates where the fixed geometric parameters may be determined by the common symmetry. DFT (density functional theory such as B3LYP\(^{32,34} \)) calculations as well as CCSD(T) (coupled cluster theory with all single, double, and perturbative triple excitations) were also performed.

For cyclo[18]carbon, all calculations were performed with the DFT M06-2X hybrid functional\(^{43} \) utilizing the def2-TZVPP basis set.\(^{52} \) According to Ref. 57, this functional reproduces minimum and transition state conformers of cyclo[18]carbon correctly.

The Gaussian16\(^{46} \) and COLOGNE2019\(^{77} \) program packages were used for the calculations in Cartesian and RPD coordinates, respectively, whereas the CFOUR program\(^{78} \) was used for CCSD(T) calculations.

IV. RESULTS AND DISCUSSION

A. Results for cycloheptane

As an odd-membered ring, cycloheptane does not possess a strain-free conformation.\(^{60} \) Hendrickson\(^{61} \) showed in 1967 that
cycloheptane has four stationary conformers: boat (B), chair (C), twist boat (TB), and twist chair (TC), in which TC is the lowest minimum state whereas C and TB are merely transition states. Eight years later, Strauss and co-workers found two additional transition states, i.e., bent transition state (BTS) and twist transition state (TTs; also called T3 by Wiberg”). These six conformers of cycloheptane and a less relevant planar one (P) with D_{2d} symmetry were recalculated at the MP2/cc-pVTZ level in this work. The number of imaginary frequencies characterize transition states according to B3LYP with small imaginary frequencies, which is not an integer divisor of 2π, and therefore $\frac{1}{3}$φ2 has to be taken instead. The PES in the $\{q_2, \frac{1}{3}q_2\}$ space was optimized at the MP2/cc-pVDZ level, where all the other coordinate parameters were relaxed.

As shown in Fig. 2, the six conformers except P can be grouped into two families. The proper conformers C, BTS, and B with C_i symmetry are in the $\phi_2 = 5mn\pi/7$ ($m = 0, 1, \ldots, 13$) directions, while the twist conformers TC, TTs, and TB with C_2 symmetry are in the $3(m + \frac{1}{3})\pi/7$ directions. The other geometries on the PES have C_i symmetry. Obviously, in the radical direction, BTS is a transition state between C and B, and TTs a transition state between TC and TB. Wiberg” surmised that TTs is an intermediate transition state between TC and B, which seems not to be true according to our results.

TC is the global minimum with the lowest energy, with the C conformer only 1.24 kcal/mol higher in energy allowing for a pseudorotation between TC and C, where C is a first order transition state. The B and TB conformers are about 3 kcal/mol higher in energy than TC. B and TB have very similar RPD amplitudes and the largest total puckering amplitude Q. Energetically, they can also pseudorotate freely with an energy difference of merely 0.01 kcal/mol, in which B is a local minimum and TB, a first order transition state. Between TC (C) and TB (B), the energy barrier of TTs (BTS) is relatively higher than the ones in the angular direction, so the TC–C and TB–B pseudorotations are more easily to happen. It is extremely unlikely to pass through the P conformer, a fourth order transition state being about 54 kcal/mol higher in energy than TC.

B. Results for cyclooctane

Cyclooctane is one of the most investigated ring molecule. During the last 50 years, it was studied using vibrational spectroscopy, nuclear magnetic resonance (NMR)-spectroscopy, and electron diffraction analysis. Computational investigations were first based on force field calculations, and only in the last 30 years ab initio quantum chemical calculations followed. The conformational space of cyclooctane has been studied using Distance Geometry, its properties in bulk liquid liquid phases were investigated with the help of molecular dynamics simulations, extending these studies to the Monte Carlo level. The conformers of cyclooctane have been also characterized employing Bayesian methods or testing new methods for the loop closure problem. The 72-dimensional hyperspace of cyclooctane was successfully reduced to a 2D CES. Recently, the topological energy and conformational landscape of cyclooctane was explored involving machine learning techniques.

Many of these studies based their choice of conformers to be discussed on the pioneering work of Hendrickson who carried out in the mid 1960s, extensive studies on medium-seized rings using force field methods. He identified ten different conformers of cyclooctane and tried to order them in different spaces and pseudorotational pairs. However, his analysis was hampered by the use of dihedral angles and the inherent redundancy problem, which led to ten basis conformations. Hence, most of the following studies of cyclooctane used Hendrickson’s 10 canonical forms. This choice was supported by the 2D CES derived by Martin and coworkers and the dynamic processes these authors singled out on this CES. The CES was found to be best described by the intersection of a sphere and a Klein bottle where the low dimensionality was obtained by a decomposition of the Klein bottle into two Möbius strips. This presentation may be quite useful, but is plagued by the fact that the conformational description is carried out with torsional angles, which is problematic when defining the unique forms of cyclooctane.

TABLE I. Stationary points of cycloheptane, MP2/cc-pVTZ calculations.

<table>
<thead>
<tr>
<th>No.</th>
<th>Form</th>
<th>Sym.</th>
<th>ΔE (kcal/mol)</th>
<th>Q (Å)</th>
<th>T (Å)</th>
<th>R (Å)</th>
<th>q_2 (Å)</th>
<th>q_3 (Å)</th>
<th>θ_2 (deg)</th>
<th>Imag. freq. (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TC</td>
<td>C_2</td>
<td>0.00</td>
<td>0.849</td>
<td>0.099</td>
<td>1.621</td>
<td>0.547</td>
<td>0.649</td>
<td>40.1</td>
<td>min.</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>C_i</td>
<td>1.24</td>
<td>0.803</td>
<td>0.084</td>
<td>1.634</td>
<td>0.460</td>
<td>0.658</td>
<td>35.0</td>
<td>113i (a)</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>C_i</td>
<td>2.95</td>
<td>1.173</td>
<td>0.120</td>
<td>1.554</td>
<td>1.173</td>
<td>0.015</td>
<td>89.3</td>
<td>min.</td>
</tr>
<tr>
<td>4</td>
<td>TB</td>
<td>C_2</td>
<td>2.96</td>
<td>1.172</td>
<td>0.120</td>
<td>1.554</td>
<td>1.172</td>
<td>0.012</td>
<td>89.4</td>
<td>20i (b)</td>
</tr>
<tr>
<td>5</td>
<td>TTs</td>
<td>C_2</td>
<td>8.20</td>
<td>1.060</td>
<td>0.137</td>
<td>1.584</td>
<td>1.015</td>
<td>0.304</td>
<td>73.3</td>
<td>218i (a)</td>
</tr>
<tr>
<td>6</td>
<td>BTS</td>
<td>C_i</td>
<td>12.20</td>
<td>0.963</td>
<td>0.112</td>
<td>1.621</td>
<td>0.914</td>
<td>0.302</td>
<td>71.7</td>
<td>263i (a′), 135i (a′′)</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>D_{7h}</td>
<td>53.54</td>
<td>0.000</td>
<td>0.000</td>
<td>1.789</td>
<td>0.000</td>
<td>0.000</td>
<td>90.0</td>
<td>416i (c$^\prime$), 257i (c$^\prime$)</td>
</tr>
</tbody>
</table>
Before analyzing cyclooctane in terms of puckering coordinates, it is useful to summarize all its stationary conformers reported in the literature, which are much more complex than those of cycloheptane. Hendrickson’s 10 conformers are boat–chair (BC), chair–chair (CC), boat–boat (BB; also called “saddle” but the latter name was not generally accepted), twist chair (TC), chair (C), boat (B), crown (CR), twist chair–chair (TCC), twist boat–chair (TBC), and a “S4” conformer (denoted as S to distinguish from its S_4 point group symmetry). However, several of them were questioned.

- **S.** Wiberg showed that the S conformer was indeed, BB after optimization with B3LYP, but the existence of S is confirmed in Ref. 72 by Hartree–Fock (called the “B” conformer by mistake as pointed by Wiberg) and also in this work using MP2/cc-pVTZ.

- **CC and TCC.** Rocha et al. pointed out that the CC and TCC conformers do not exist at all at the Hartree–Fock level, which is also supported in this work by DFT calculations with different functionals. MP2 results are quite different: TCC exists if the basis set is large enough (e.g., 6-311+G* by Wiberg and cc-pVTZ in this work), whereas CC may be obtained only with smaller Pople basis sets such as 3-21G and 6-311G, but turns into CR after geometry optimization with larger basis sets like 6-311+G**, cc-pVDZ, cc-pVTZ, etc. We also performed CCSD(T)/6-311G and CCSD(T)/cc-pVDZ calculations in this work to confirm the existence of CC and TCC, but even higher levels of calculations may be needed to further confirm them.

Apart from the well-known ten conformers of Hendrickson, other conformers were reported in the literature and also found in this work.

- **TB.** Hendrickson’s S conformer was also named twist-boat (TB), but in early work, the geometry of TB appears to be quite different from that of the known S conformer although being of S_4 symmetry. Therefore, this TB conformer should be better considered as a new stationary geometry of cyclooctane. This new TB conformer has also been reported by Rocha et al., called TS1.

- **WT1, WT2, and WT4.** Wiberg calculated four new transition states at the MP2 level of theory (i.e., T_{Sn}, $n = 1, 2, 3, 4$, denoted as WTn in this work), in which WT2 is the same as the TS2 conformer by Rocha et al., whereas WT3 is identical to TC according to the RPD coordinate analysis of their coordinates.

- **NTn ($n = 1, 2, \ldots, 7$).** In this work, seven new transition states were identified with the help of RPD coordinates, denoted as NTn among them, NT3 resembles the “peak” conformer of Martin et al. However, these authors did not provide coordinates for an additional analysis via RPD coordinates.

- **P.** A planar conformer (P) with D_{hh} symmetry is a high-order transition state with high energy. Different from the P conformer of cycloheptane, here, P plays a certain role since the D_{hh} point group has more subgroup symmetries than D_7h.

All 22 conformers, including the uncertain CC are summarized in Table II. Cartesian and RPD coordinates are collected in the supplementary material with all possible ϕ_n angles. Since q_2 changes its sign by the inversion operation of Cartesian coordinates, only positive q_2 values are reported. Table II shows that cyclooctane has five minima in which BC is the most stable one, being in agreement with previous studies.
Traditionally, the conformers of cyclooctane and their equivalent steric configurations are difficult to distinguish by merely using their energies, bond lengths, bond angles, and dihedral angles. However, this becomes much easier by comparing their RPD amplitudes. Furthermore, a large number of equivalent configurations can be classified by different combinations of RPD phase angles (see Table S2).

There are only $N - 3 = 5$ unique types of out-of-plane displacements and $2N - 3 = 13$ planar ones in an 8-membered ring, if one starts with the P conformer as a suitable reference.\(^{22,24,26,32}\) To investigate the relationship between the 22 conformers, the CES in the 2D puckering space is first projected onto the 2D (q_2, q_3) subspace, since q_2 and q_3 are the two most significantly different RPD coordinates. The PES at the MP2/cc-pVDZ level is plotted in Fig. 3 with different constraints of ϕ_2, ϕ_3, and ψ_1 to maintain a common symmetry higher than C_1. It should be noted that in Figs. 3(a) and 3(b), the maxima at about ($q_2 = 0 \text{ Å}, q_3 = 0.5 \text{ Å}$) are not stationary points since they do not lead to a high symmetry C_{2h}. One can see in Figs. 3(a) and 3(b) that the PESs around $q_3 = 0 \text{ Å}$ are very flat, but since a smaller basis set cc-pVDZ is used, TCC and NT7 cannot be located. The situation for CC is similar. Nevertheless, 19 conformers and their relationships can be described by Fig. 3. Three conformers are still missing, including B, S, and WT2.

The PESs in the (q_2, q_3) subspace with different constraints of ϕ_2 and ψ_1 are plotted in Fig. 4, and the pure (q_2, ϕ_3) ($n = 2$ or 3) subspace in Fig. 5, where B and S may be located. The lowest pseudorotation paths connecting 21 conformers (except P) are, respectively, projected on q_2, q_3, ϕ_2, and ψ_1 as shown in Fig. 6. WT2 has only C_1 symmetry, i.e., no geometric constraint. Thus, as shown in Fig. 5(a), if all the other coordinate parameters are relaxed except a given ϕ_2, WT2 connecting two known conformers BC and TBC can be obtained, and the resulting 1D PEC is shown in Fig. 6(h). For other 2D subspaces (e.g., (ϕ_2, ϕ_3)) and geometric constraints, the common symmetry is always C_1, so they are the same as those shown in Fig. 6(h).

In the following, we discuss the relationship between the 22 conformers.

- As shown in Fig. 3(a), NT2 is a transition state between BC and TBC, denoted as TC--NT2--BC. Similarly, there are BC--WT4--BB, BC--NT4--CC or BC--NT4--CR (depending on the existence of CC), and BB--NT3--CC or BB--NT3--CR. In addition, BC may turn into another BC with $\phi_3 = 180^\circ$ through NT3, i.e., BC--NT3--BC^*, being energetically less favorable than the path BC--WT4--BB and BC--WT4--BC. The BC--WT4--BB path was reported by Wiberg\(^7\) and also by Martin et al.\(^{79}\) Martin et al. further suggested\(^7\) that S (called TB therein) is a transition state between WT4 (called TS4) and BB, which does not seem to be true according to our results. It is noteworthy that if CC exists (e.g., at the MP2/6-311G level of theory), it will be lower in energy than CR, so CC will be to a local minimum, whereas CR a transition state. The lowest pseudorotation paths connecting these conformers may be found in Figs. 6(a) and 6(b).
FIG. 3. PES and stationary points of cyclooctane in the \((q_2, q_3)\) space with (a) \(\phi_2 = 0\), \(\phi_3 = 0\), (b) \(\phi_2 = 2\phi_3 = 45^\circ\), and (c) \(\phi_2 = 0\), \(\phi_3 = 45^\circ\), and \(q_4 = 0\) Å. CC, TCC, and NT7 cannot be obtained at the MP2/cc-pVDZ level.

- Figure 3(b) shows the CR–NT7–TCC, TCC–NT5–TB, TBC–WT1–TCC, TBC–NT6–TB, and TBC–C–TBC' (TBC': TBC with \(\phi_2 = 225^\circ\)) paths. In addition, paths TBC–NT5–TBC'', TBC–NT6–TB–NT6''–TBC'', and TBC–WT1–TCC–WT1'–TBC'' (TBC'': TBC with \(\phi_3 = 202.5^\circ\)) may also be possible, but the required energies are higher. Among these paths, the TBC (called TSI)–WT1–TCC path was also reported by Martin et al.,79 whereas the path TBC–WT1–CR suggested by Wiberg62 is only possible if TCC and NT7 would not exist. The lowest pseudorotation paths connecting these conformers are plotted in Figs. 6(a) and 6(c).

- Figure 3(c) shows only one meaningful path, i.e., TC–NT1–BB. In addition, TC and BB may be connected to

FIG. 4. PES and stationary points of cyclooctane in the \((q_2, q_4)\) space with (a) \(\phi_2 = 0\) and \(q_3 = 0\) Å and (b) \(\phi_2 = 45^\circ\) and \(q_3 = 0\) Å. CC, TCC, and NT7 cannot be obtained at the MP2/cc-pVDZ level.
FIG. 5. PES and stationary points of cyclooctane in the (a) \([q_2, \phi_2]\) space in the \(S_4\) common symmetry with \(q_3 = q_5 = 0 \text{ Å}\) and (b) \([q_3, \phi_3]\) space in the \(C_i\) common symmetry with \(q_2 = q_4 = 0 \text{ Å}\).

their mirror image conformations through \(P\), but the energy request would be too high, as seen in Fig. 6(d).

- In Fig. 3(a), there is BB–NT3–CC or BB–NT3–CR depending on the existence of CC, which has taken place in Fig. 3(a).

- In Fig. 4(a), there is BB–NT3–CC or BB–NT3–CR depending on the existence of CC, which has taken place in Fig. 3(a).

- In Fig. 4(b) and also in Fig. 6(e), there are three paths, i.e., TB–B–TB’ (TB’: TB with negative \(q_4\)), CR–NT7–TCC,
FIG. 6. One-dimensional PECs of the lowest pseudorotation path connecting stationary points of cyclooctane. (a) PECs along \(q_2 \) in the \(\{q_2, q_3\} \) space, (b)–(d) PECs along \(q_3 \) in the \(\{q_2, q_3\} \) space, (e) PECs along \(q_2 \) in the \(\{q_2, q_4\} \) space, (f) PEC along \(\phi_2 \) in the \(\{q_2, \phi_2\} \) space, (g) PEC along \(\phi_3 \) in the \(\{q_3, \phi_3\} \) space, and (h) PEC along \(\phi_2 \) without geometric constraints.
and TCC-NT5-TB, the latter two paths are also shown in Fig.3(b).

- In Fig. 5(a), there are S-\textit{BB}-S’ and S-\textit{B}-S”, where the possible \(\varphi_1 \) angles of S, S’, and S” may be found in Table S2. The \(\{q_3, \varphi_2\} \) pair spans the first pseudorotational space in the \(\text{S}_1 \) common symmetry with the two \(D_{2z} \)-symmetrical basis conformations \(\text{BB} \) and \(\text{B} \) at \(m\pi/2 \) (\(m = 0, 1, 2, \ldots, 7 \)) and \(3 \pi/2 \), and \(\text{S} \) is a linear combination of \(\text{BB} \) and \(\text{B} \). As assumed by Hendrickson, there are four \(\text{BB} \), 4 \(\text{B} \), and 8 \(\text{S} \) conformers along the \(\varphi_2 \) pseudorotation itinerary. Figure 6(f) shows the lowest pseudorotation path in detail.

- In Fig. 5(b), the \(\text{C} \) and \(\text{TC} \) conformers appear alternately (cf. Table S2 for possible \(\varphi_1 \) angles). The second pseudorotational space spanned by \(\{q_3, \varphi_3\} \) in the \(\text{C}_1 \) common symmetry is defined by the \(\text{C}_{2h} \)-symmetrical \(\text{C} \) conformer at \((m + \frac{1}{2})\pi/4 \) (\(m = 0, \ldots, 7 \)) and TC at \(m\pi/4 \). There are \(\text{C} \) and \(\text{TC} \) conformers shown around the cycle. As seen in Fig. 6(g), the lowest pseudorotation path connecting \(\text{C} \) and \(\text{TC} \) is quite flat.

- As shown in Fig. 6(h), there is a \(\text{BC-\textit{WT2}-TB2} \) path, which was also reported by Martin et al., Rocha et al., and Wiberg.

According to Figs. 3–6, some of the paths previously reported in the literature are energetically and/or topologically not possible. For example, while the \(\text{TBC-TC} \) (called \(\text{TST3 therein}-\text{TBC} \) path suggested by Wiberg and also by Martin et al.) can be considered to be identical with our \(\text{TBC-\textit{C}-TBC} \) path, although \(\text{TC} \) and \(\text{C} \) are very close in energy, the \(\text{BC-\textit{TB2}} \) (TST therein)–CR suggested by Rocha et al. cannot exist at all according to our calculations.

Compared to \(q_2 \), the puckering amplitude is generally more delocalized (or smaller) in \(q_3 \). The most delocalized puckering amplitude is found in \(q_3 \) for the \(\text{CR} \) conformer since an equally delocalized puckering (one atom up, the neighboring atom down) leads to the best staggering of the CH bonds in a cycloalkane. Hence, the total puckering amplitude \(Q \) has the smallest value for \(\text{CR} \) (\(Q = 0.808 \) Å, Table II) except \(\text{P} \) and becomes about 0.14 Å larger for \(\text{C} \) and \(\text{TC} \), whereas it is 1.52–1.65 Å for \(\text{BB} \), \(\text{S} \), and \(\text{B} \). As an important result, consequently, the way to get to \(\text{CR} \) from the \(\{q_3, \varphi_1\} \)-space is much shorter than that from the \(\{q_2, \varphi_2\} \)-space.

C. Results of Cyclo[\textit{18}]carbon

In experimental and advanced theoretical studies, the planar cyclo[\textit{18}]carbon molecule has two conformers, i.e., the polyyne minimum (P) with alternating weaker and stronger C–C bonds with \(D_{3h} \) symmetry and the cumulene transition structure (C) with identical C–C bonds with \(D_{18h} \) symmetry, being a good example to demonstrate the use of deformation coordinates.

An 18-membered ring has \(N = 2 = 16 \) pairs of \(\{t_{\text{B}}, t_{\text{c}}\} \) deformation coordinates. For an arbitrary \(t_{\text{c}} \) phase angle with a non-zero \(t_{\text{B}} \) amplitude, the resulting point group symmetry of the planar ring can be \(\text{C}_{2h} \equiv \text{C}_{n} \) (\(n = 1, 5, 7, 11, \) and 13), \(\text{C}_{2h} \) (\(n = 2, 4, 8, 10, 14, \) and 16), \(\text{C}_{3h} \) (\(n = 3 \) and 15), \(\text{C}_{4h} \) (\(n = 6 \) and 12), and \(\text{C}_{9h} \) (\(n = 9 \)). That is, \(m \) in \(C_{m,n} \) is the greatest common divisor of \(N \) and \(n \). By the definition of the deformation coordinates the \(\{t_{\text{B}}, t_{\text{c}}\} \) modes squeeze an N-gon to an \((N - n) \)-gon,22 thus the 9-gon-like P form (assuming that the nine stronger C–C bonds are extremely short) must result from the \(\{t_{\text{B}}, t_{\text{c}}\} \) modes; on the other hand, \(\text{C}_{9h} \) is the largest common subgroup of \(D_{9h} \) and \(D_{18h} \). Therefore, \(\{t_{\text{B}}, t_{\text{c}}\} \) are the dominant deformation modes. As demonstrated in Fig. 7, two basis forms are given by \(r_{\text{c}} = 90^\circ \) (or \(270^\circ \)) and \(0^\circ \) (or \(180^\circ \)), respectively, where the former leads to a 9-gon-like configuration and the latter to a two-layer 9-gon-like one. Their deformation analysis shows that the two modes may be assigned to the normal vibrations in the \(b_{2u} \) and \(b_{1u} \) irreducible representations of \(D_{18h} \), respectively (cf. Table A1 in the supplementary material of Ref. 22).

The PES calculated in the \(\{t_{\text{B}}, t_{\text{c}}\} \) space is plotted in Fig. 8. During the optimization, all the other RPD amplitudes (except \(R \)) are fixed at zero since they may lead to higher energies with lower symmetries. At the M06-2X/def2-TZVPP level of theory, the \(\text{C} \) conformer is 9.42 kcal/mol higher in energy than the \(\text{P} \) conformer, being in good agreement with the results in Ref. 57. One can see in Fig. 8 that there are two orthogonal paths \(\text{P}–\text{C}–\text{P}’ \) (\(\text{P}’ \) is the \(\text{P} \) conformer in the \(270^\circ \) direction). One is in the radial direction with fixed \(r_{\text{c}} = 90^\circ \) or \(270^\circ \) in the \(D_{3h} \) common symmetry, corresponding to the stretching of nine \(\text{C}_2 \) fragments (cf. Fig. 7) as reported in Ref. 57, which was also called the bond pseudolibration process.46 The other path as indicated by the dotted blue curve in Fig. 8 corresponds to the bond pseudorotation process,46 where each carbon atom \(\beta \) rotates by \(\tau_\beta = \eta_\beta^2 \) on a small circle with the orbit radius \(t_\beta \) (cf. Fig. 1 in Ref. 22 as a demonstration of 5-membered ring). In practice, the configuration of cyclo[\textit{18}]carbon may be more complicated since it could be driven by a random combination of the two basic paths.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Bond pseudorotation cycle in the \(\{t_{\text{B}}, t_{\text{c}}\} \) space of a 18-gon with \(t_{\text{c}} \) being extremely large and \(r_{\text{c}} \) increasing in a step of \(30^\circ \) from \(0^\circ \) to \(360^\circ \). The position of atom 1 is indicated by a black dot (clockwise ordering of ring atoms).}
\end{figure}
V. CONCLUSIONS

In this work, we developed analytic gradient and second derivatives through B-matrices and D-tensors in terms of RPD coordinates; so constraint or full geometry optimizations for (poly)cyclic molecules in terms of RPD coordinates are now possible, particularly important for an optimization at non-stationary points, which is not feasible with Cartesian or internal coordinates. The application of RPD coordinates for the description of Berry pseudorotations, fullerene pseudorotations, etc. will be performed in future work.

SUPPLEMENTARY MATERIAL

All optimized stationary point geometries of C_{7}, C_{8}, and C_{18} in RPD and Cartesian coordinates are provided in the supplementary material.

ACKNOWLEDGMENTS

This work was financially supported by the National Science Foundation, Grant No. CHE 1464906. We thank SMU for providing generous computational resources. Dmitry Izotov is acknowledged for his preliminary programming work. W.Z. also acknowledges the financial support by the Double First-Class University Construction Project of Northwest University.

In memoriam of Dieter Cremer.

REFERENCES
