
XInsight: Revealing Model Insights
for GNNs with Flow-Based Explanations

Eli Laird(B) , Ayesh Madushanka , Elfi Kraka , and Corey Clark

Southern Methodist University, Dallas, TX, USA
{ejlaird,amahamadakalapuwage,ekraka,coreyc}@smu.edu

Abstract. Progress in graph neural networks has grown rapidly in
recent years, with many new developments in drug discovery, medical
diagnosis, and recommender systems. While this progress is significant,
many networks are ‘black boxes’ with little understanding of the ‘what’
exactly the network is learning. Many high-stakes applications, such as
drug discovery, require human-intelligible explanations from the models
so that users can recognize errors and discover new knowledge. There-
fore, the development of explainable AI algorithms is essential for us to
reap the benefits of AI.

We propose an explainability algorithm for GNNs called eXplainable
Insight (XInsight) that generates a distribution of model explanations
using GFlowNets. Since GFlowNets generate objects with probabilities
proportional to a reward, XInsight can generate a diverse set of expla-
nations, compared to previous methods that only learn the maximum
reward sample. We demonstrate XInsight by generating explanations for
GNNs trained on two graph classification tasks: classifying mutagenic
compounds with the MUTAG dataset and classifying acyclic graphs with
a synthetic dataset that we have open-sourced. We show the utility of
XInsight’s explanations by analyzing the generated compounds using
QSAR modeling, and we find that XInsight generates compounds that
cluster by lipophilicity, a known correlate of mutagenicity. Our results
show that XInsight generates a distribution of explanations that uncov-
ers the underlying relationships demonstrated by the model. They also
highlight the importance of generating a diverse set of explanations, as
it enables us to discover hidden relationships in the model and provides
valuable guidance for further analysis.

Keywords: Explainable AI · Graph Neural Networks · GFlowNets

1 Introduction

Graph neural networks (GNNs) have emerged as a popular and effective machine
learning algorithm for modeling structured data, particularly graph data. As
GNNs continue to gain popularity, there is an increasing need for explainable
GNN algorithms. Explainable AI refers to machine learning algorithms that
can provide understandable and interpretable results. Explainable AI algorithms
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Longo (Ed.): xAI 2023, CCIS 1902, pp. 303–320, 2023.
https://doi.org/10.1007/978-3-031-44067-0_16



304 E. Laird et al.

have the ability to uncover hidden relationships or patterns that deep learning
models use in making their decisions. This means that researchers can use these
methods to understand why a model arrived at a certain decision. In the case of
GNNs, the need for explainability arises from the fact that they are often used
in applications where the decision-making process needs to be transparent and
easily understood by humans. For example, in the field of drug discovery, GNNs
are used to predict the efficacy of a drug by analyzing its molecular structure [49].
In this case, it is crucial to understand how the GNN arrived at its prediction,
as it can have significant implications for patient health and safety.

Explainable AI algorithms also uncover erroneous correlations in deep learn-
ing models. For instance, in a study by Narla et al. [25], the researchers found
that their model had incorrectly learned that images with rulers were more likely
to be cancerous. The use of explainable AI methods helped them uncover this
error and highlighted the need for methods that can explain the underlying
relationships that deep learning models rely on to make predictions.

In response to this need, we propose a novel GNN explainability algorithm,
eXplainable Insight (XInsight), that generates diverse model-level explanations
using Generative Flow Networks (GFlowNets) [3]. XInsight represents the first
application of GFlowNets to explain graph neural networks. Unlike previous
model-level algorithms, that only learn the maximum reward sample, XInsight
generates objects with probabilities proportional to a reward. We demonstrate
the effectiveness of XInsight by applying it to GNNs trained on two graph
classification tasks: classifying mutagenic compounds with the MUTAG dataset
and classifying acyclic graphs with a synthetic dataset. In our experiments, we
demonstrate that XInsight’s explanations for the MUTAG dataset [24] can be
analyzed using data mining techniques and QSAR [14] modeling to uncover hid-
den relationships in the model. For instance, when analyzing the compounds
generated by XInsight, we found that they clustered by lipophilicity, which is a
known correlate of mutagenicity. Our results demonstrate that XInsight gener-
ates a distribution of explanations that enables the discovery of hidden relation-
ships in the model.

The key contributions of this paper are summarized below:

(i) We proposed eXplainable Insight (XInsight), an explainability algorithm
for Graph Neural Networks (GNNs) that uses GFlowNets to generate a
distribution of model explanations.

(ii) We applied XInsight to explain two classification tasks, one of which was
a newly open-sourced synthetic dataset, and the other was a real-world
molecular compound dataset.

(iii) We analyzed XInsight’s generated explanations using a clustering method
and chemical analysis tool, which helped us to discover important under-
lying patterns and relationships of the examined model.



XInsight 305

2 Related Work

2.1 Graph Neural Networks

Graph neural networks (GNNs) have emerged as a popular deep learning tech-
nique to model structured data that can be represented as graphs. Unlike tradi-
tional neural networks that operate on structured data like images and sequences,
GNNs operate on non-Euclidean data, such as social networks [9,34], chemi-
cal molecules [5,11,12,49], and 3D point clouds [10,31]. GNNs typically use a
message-passing approach [12], where the feature representations of nodes, edges,
and the overall graph are iteratively updated by aggregating the features of their
neighbors and combining them with the learned features from the previous step.
This message-passing process is repeated for a fixed number of iterations or until
convergence. Expanding upon traditional message-passing GNNs, many other
GNN architectures have been proposed, such as Graph Convolutional Networks
(GCNs) [48] that use convolutional operations similar to Euclidean Convolu-
tional Neural Networks, Graph Isomorphism Networks (GINs) [41] that employ
multilayer perceptrons to aggregate neighboring features, and Graph Attention
Networks (GATs) [36] that apply an attention mechanism to weigh contributions
of neighboring nodes/edges based on their importance. With the development
of GNNs, we can now model and make predictions based on structured data in
a way that was not possible before.

2.2 Explaining Graph Neural Networks

Graph neural networks (GNNs) are widely used in various domains such as
drug discovery [5,11,12,49], recommendation systems [39,40,43], and medical
diagnosis [1,18,19]. However, as with other machine learning models, GNNs
are often considered to be ‘black boxes’, providing little insight into how they
make predictions. Therefore, explainable AI algorithms for GNNs have gained
increasing attention in recent years.

There are several approaches to developing explainable GNN algorithms that
can conveniently be categorized as instance-level and model-level approaches.
Instance-level algorithms provide explanations for individual predictions of the
GNN and include methods that utilize the gradients of the features to deter-
mine input importance, such as sensitivity analysis, Guided BP, and Grad-CAM
[2,30,33], perturb inputs to observe changes in output as in GNNExplainer and
PGExplainer [20,42], and learn relationships between the input and its neighbors
using surrogate models [15,38]. While there are several instance-level explainabil-
ity methods for GNNs, there is still a lack of effective model-level explainability
methods [46].

Model-level explanations help identify how the GNN approaches the task at
hand, and can reveal patterns and structures that may not be immediately evi-
dent from the graph data alone. They also help identify when a model is not
performing well on the given task, or when it is exhibiting unwanted behavior.
Outside of the graph-learning world, input optimization is a popular model-level



306 E. Laird et al.

approach for image classification models, where the goal is to generate an image
that maximizes the predicted class label [8,21,26–28,32]. In contrast, model-level
explanations for GNNs have received relatively less attention. One of the most
prominent model-level explainability methods for GNNs is XGNN (eXplainable
Graph Neural Networks) [45]. XGNN leverages reinforcement learning techniques
to generate graphs that provide insights into how the GNN is making predic-
tions. XGNN generates a graph explanation that maximizes a target prediction,
thereby revealing the optimized class pattern learned by the model.

To gain more insight into the model, it is often necessary to analyze a diverse
distribution of examples that cover different scenarios and edge cases. Further-
more, generating a distribution of explanations opens the door to applying sta-
tistical analysis and data mining techniques, such as dimensionality reduction or
t-tests, to uncover hidden relationships in the data. For instance, in this paper
we use dimensionality techniques to uncover clusters within XInsight explana-
tions. When then used these clusters to verify that the model correctly learned
a known correlation within the data.

2.3 XGNN

XGNN, which stands for eXplainable Graph Neural Networks, is a novel model-
level explainability framework introduced by Yuan et al. in 2020 [45]. The goal
of XGNN is to generate a graph that maximizes a specific target class of a
graph classification model. XGNN employs a reinforcement learning approach
to iteratively build a graph using actions that add nodes or edges to the graph
at each time step. During each time step, the model calculates the reward based
on the probability of the target class, which encourages the algorithm to select
actions that generate graphs of a particular class. This process is repeated until
the model converges or until a maximum number of time steps is reached.

Like Graph Convolutional Policy Networks [44], XGNN learns a generator
model using a policy gradient. The generator produces a graph that contains
patterns that maximize the target class in question. In contrast to instance-level
explainability methods that identify subgraphs that contribute to the model’s
output, XGNN focuses on the entire graph and the relationships between its
nodes and edges. XGNN is currently the only model-level explanation method
that has been proposed for GNNs, according to a recent survey [46].

While XGNN is a powerful model-level explainability method for GNNs,
it generates a single maximum reward explanation, which limits its ability to
explain the full extent of the model’s behavior. XGNN is also limited in its utility
to discover hidden insights related to the classification task due to the inability
to perform a more detailed analysis of the explanations, such as clustering. Due
to these limitations, there is no way of directly comparing XGNN to techniques
that generate a distribution of explanations, such as XInsight.

2.4 GFlowNets

Generative Flow Networks (GFlowNets) are a type of generative model that
generate a diverse set of objects by iteratively sampling actions proportional to



XInsight 307

a reward function [3,4]. The objective of GFlowNets is to learn to sample from
a distribution of diverse and high-reward samples instead of generating a single
sample to maximize a reward function. GFlowNets can be viewed as Markov
Decision Processes (MDP) represented by a directed acyclic graph (DAG), where
the edges represent the actions that can be taken in the states. The flows coming
into a state represent the actions that can be taken to reach that state, while
the flows leaving a state represent the actions that can be taken in that state to
reach the next state. The DAG is traversed iteratively by sampling flows, which
generates a flow trajectory that ends when a terminal state is reached. The flow
entering a terminal state is the total flow of the trajectory and is equal to the
reward function assigned to that state.

Trajectory Balance Objective. In [22], Malkin et al. introduced the Tra-
jectory Balance Constraint, shown in Eq. 1, which ensures that the flow of the
trajectory leading to a state is equal to the flow of the trajectory leaving that
state and terminating at a terminal state. Satisfying this constraint allows the
GFlowNet to sample objects with probability proportional to its reward.

Z
∏

t

PF (st+1|st) = R(τ)
∏

t

PB(st|st+1) (1)

where Z is the ‘total flow’. The right side of Eq. 1 represents the fraction
of the total reward going through the trajectory, while the left represents the
fraction of the total flow going through the trajectory. This constraint can be
turned into the Trajectory Balance Objective [22] for training a GFlowNet, shown
below:

LTB(τ) =
(

log
Z

∏
t PF (st+1|st)

R(τ)
∏

t PB(st|st+1)

)2

(2)

Applications of GFlowNets. GFlowNets have been applied to many genera-
tive applications, including molecular sequence generation [3,16,22] and MNIST
image generation [47]. And due to their ability to generate diverse samples,
GFlowNets trained to generate model explanations, as in XInsight, provide the
machine learning user a greater breadth of human-readable explanations of what
their models are learning from the data.

3 eXplainable Insight (XInsight)

3.1 Explaining Graph Neural Networks

Graph classification networks can be difficult for humans to interpret since graph
structures can be less intuitive to humans compared to visual features which
humans are naturally equipped to interpret. Therefore when seeking to under-
stand a graph classification model, a quality explainability algorithm should take



308 E. Laird et al.

advantage of the natural pattern matching capabilities of its human users by pro-
ducing concise explanations that highlight patterns that are easily interpreted by
humans. To make it even easier for its users, a quality explainability algorithm
should produce a distribution of explanations in order to provide the user with
multiple perspectives into the model; however, most algorithms to date lack one
or both of these qualities.

XInsight not only produces concise explanations that highlight important
patterns but also produces a distribution of explanations that allows the user to
develop a more robust understanding of what the examined model is learning
from the data. XInsight trains a GFlowNet to generate a diverse set of model-
explanations for a graph classification model. The explanations that XInsight
generates highlight general patterns that the classification model attributes to
specified target class in question.

In the context of model explanations as a whole, the explanations that XIn-
sight produces are particularly useful for discovering relationships within the
trained model. For example, they can help determine if a model incorrectly
associates an artifact in the data with the target class, like rulers with skin
cancer as discussed in [25]. XInsight empowers users to do this by generating a
distribution of explanations, which can then be passed through traditional data
mining techniques, such as clustering, to uncover what the model is learning
from the data.

3.2 Generating Graphs with XInsight

XInsight employs a GFlowNet that it is trained to generate graphs with proba-
bilities proportional to their likelihood of belonging to a target class. Specifically,
the GFlowNet generates a graph by iteratively sampling actions that determine
whether to add a new node or edge to the existing structure. It is important to
note that the likelihood of a sample belonging to a particular class is defined
by the trained model that is being explained. Therefore, the distribution of
generated samples is dependent upon the trained model and not the true class
distribution, which in the context of explaining a trained model is desirable since
the goal is to understand the model itself.

Action Space. The action space, A, is split into two flows: the first selecting
a starting node and the second selecting the ending node. The starting node
is selected from the set of nodes N in the current incomplete graph Gt. The
ending node is selected from the union of the same N , excluding the starting
node and a set of building blocks B. Together, the starting and ending nodes
form the combined action A(ns, ne) sampled from the forward flow PF . Taking
this action generates a new graph Gt+1 as shown below:

Gt+1 ∼ PF (A(ns, ne)|Gt) (3)

pstart(ns ∈ N |Gt) (4)



XInsight 309

pend(ne ∈ N ∪ B;ne �= ns|Gt) (5)

3.3 Proxy

The proxy f in classical GFlowNets is used to generate the reward for a generated
object. For example, in [3] Bengio et al. used a pretrained model as their proxy
to predict the binding energy of a generated molecule to a protein target. In
XInsight, we use the model to be explained as the proxy since the generated
objects are treated as explanations of the model.

Reward. The reward in XInsight guides the underlying GFlowNet to generate
graphs that explain the proxy. In XInsight, we define the reward as the proxy’s
predicted probability that the generated graph belongs to the target class c, as
shown in Eq. 6. To encourage the generation of objects explaining the target
class, we define the reward to be zero if the generated object is classified as the
opposite class. In addition, we add a scalar multiplier α to magnify the reward
for the target class, where α > 0.

R(Gt) =

{
α ∗ softmax(f(Gt)) if argmax{f(Gt)} = Target Class

0 if argmax{f(Gt)} �= Target Class
(6)

3.4 Training XInsight

We train XInsight using the trajectory balance objective, following [22]. We
define the trajectory balance objective for a complete graph G generated over a
trajectory τ actions in Eq. 7.

LTB(G) =
(

log
Z

∏τ
t PF (Gt+1|Gt)

R(Gt)
∏τ

t PB(Gt|Gt+1)

)2

(7)

The training loop consists of sampling trajectories (i.e. generating graphs),
calculating forward and backward flows and the reward, and updating the under-
lying GFlowNet parameters until convergence. We highlight the in-depth steps
of XInsight’s training loop in Algorithm 1.

For every epoch in the training loop, we start by initializing the GFlowNet
and creating an initial graph G0. Then we generate a graph by iteratively
sampling actions from the forward policy PF that add nodes or edges to the
graph at each step Gt. Once a trajectory is complete, either by the reaching the
MAX ACTIONS limit or by sampling a stop action, the reward is computed
for Gt using the Proxy. Finally, we calculate the trajectory balance loss, update
the GFlowNet’s parameters and repeat.



310 E. Laird et al.

Algorithm 1. XInsight Training Loop
Input: EPOCHS, Proxy(·), TARGET CLASS, MAX ACTIONS

XI(·; θ) ← GFlowNet
for epoch in EPOCHS do

actions ← 0
Gt ← G0 � Initialize new graph
τ ← ∅ + {Gt}
repeat

PF , PB ← XI(Gt; θ) � Generate flows
ns, ne ∼ PF � Sample start & end node
if ns = stop then

STOP ← True � Stop if stop action sampled
end if
Gnew ← T (ns, ne) � Add node/edge
PF , PB ← XI(Gnew; θ) � Recompute flows
Gt = Gnew

τ ← τ + {Gt} � Append Gt to trajectory
actions + +

until actions > MAX ACTIONS or STOP
Reward = softmax(Proxy(Gt))TARGET CLASS � Calculate reward
θ ← θ − η∇LossTB(Reward, logZ , τ) � Update parameters

end for

4 Experiment Design

4.1 Datasets

The Acyclic Graph dataset includes 2405 synthetically generated graphs labeled
as either acyclic or cyclic. We generated graphs using graph generation functions
from the NetworkX software package [13]. To improve the diversity of the dataset,
we trained a GFlowNet with a brute-force cycle checker as a reward function
to generate acyclic and cyclic graphs to add to the dataset. The code used to
generate this dataset can be found in [17].

The MUTAG dataset [24], included in Pytorch Geometric, contains 188
graphs representing chemical compounds used in an Ames test on the S.
Typhimurium TA98 bacteria with the goal of measuring the mutagenic effects
of the compound. This dataset was used in a study to measure the correlation
between the chemical structure of the compounds and their mutagenic activity
[7]. The nodes and edges in the graphs in MUTAG represent 7 different atoms
(Carbon, Nitrogen, Oxygen, Fluorine, Iodine, Chlorine, and Bromine) and their
chemical bonds. In the graph learning community, the dataset is used as a bench-
mark dataset for graph classification models labeling each graph as ‘Mutagenic’
or ‘Non-Mutagenic’.

4.2 Verifying XInsight’s Generative Abilities Setup

To validate that XInsight can generate graphs belonging to a target class, we
trained XInsight to generate acyclic graphs because of their simple and human-



XInsight 311

interpretable form. For the proxy, we trained a graph convolutional neural net-
work (GCN) to classify acyclic graphs using the Acyclic Graph dataset and node
degree as the node features, achieving 99.58% accuracy. This GCN is composed
of three graph convolutional layers (GCNConv) with 32, 48, 64 filters, respec-
tively, a global mean pooling layer, and two fully connected layers with 64 and
32 hidden units. We also used dropout and the ReLU activation function. The
GFlowNet was also a GCN made up of three GCNConv layers with 32, 64,
and 128 filters, two fully connected layers with 128 and 512 hidden units, and a
scalar parameter representing log(Z) from the reward function, see Sect. 3.3. The
building blocks used for action selection consisted of a single node of degree 1.

4.3 Revealing MUTAG Relationships Setup

Due to their highly qualitative nature, there is no established method for eval-
uating model-level explanation methods for graphs, particularly for methods
that generate a distribution of explanations. Despite this barrier, we demon-
strate XInsight’s explanatory abilities by applying it to the task of knowledge
discovery within the mutagenic compound domain. Particularly, we evaluated
XInsight for its ability to uncover meaningful relationships learned by a graph
neural network trained to classify mutagenic compounds and verify that these
relationships exist in the ground truth data.

Fig. 1. Generated graphs (8 with cycles and 8 without cycles) to verify XInsight’s
ability to generate graphs of a specified target class.



312 E. Laird et al.

For the proxy, we trained a graph convolutional neural network (GCN) to
classify mutagenic compounds using the MUTAG dataset. Following [45], we
used node features which were seven-dimensional one-hot encoded vectors encod-
ing the seven different atoms in the dataset. The architecture of this GCN mir-
rored that used for the Acyclic classification task, with the addition of another
GCNConv layer with 64 filters and LeakyReLU as the activation function. With
this architecture, we achieved 89% accuracy on the MUTAG classification task.
The GFlowNet architecture was also the same as the one used for the Acyclic
classification task, except we used seven nodes representing the different atoms
as the building blocks. The initial graph G0, used in training the GFlowNet, was
set to a single node graph with the feature value set to carbon, as in [45].

5 Results

5.1 Verifying XInsight’s Generative Abilities Using the Acyclic
Dataset

To verify that XInsight is capable of generating graphs of a particular class
defined by a classification model, we conducted an experiment in which we
trained XInsight to generate graphs from a graph convolutional network, pre-
viously trained on the Acyclic Graphs dataset. This synthetic dataset contains
two classes, acyclic and cyclic, and is described in detail in Sect. 4.1.

Following XInsight training, we generated a distribution of 16 graphs (8
acyclic and 8 cyclic), shown in Fig. 1. The results of the experiment indicate
that XInsight is indeed capable of generating acyclic graphs, which is consistent
with the nature of the dataset. This provides evidence that XInsight is capable
of generating graphs guided by the predictions of a simple classification model.

5.2 Revealing Distinct Relationships Learned by the MUTAG
Classifier

Generating Explanations. In our second experiment, we trained XInsight to
explain a GCN trained on the MUTAG dataset. Our objective was to uncover
hidden patterns and relationships that the trained GCN classifier associates with
the mutagenic class. To achieve this, we used XInsight to generate a distribution
of 16 compounds, illustrated in Fig. 2, and then fed the generated graphs through
the trained GCN to produce graph embeddings. In order to visualize the 32-
dimensional graph embeddings we used the UMAP dimensionality reduction
algorithm, which preserves global and local structure of the data [23], to project
the embeddings onto a 2-dimensional plane. From this visualization, we identified
five distinct groupings of compounds that we hypothesize group by an unknown
factor related to mutagenicity. To uncover the factor behind these groupings,
we continued our analysis by analyzing the chemical properties of the generated
compounds using QSAR modeling [14] (Fig. 3).



XInsight 313

Fig. 2. Distribution of explanations for the Mutagenic classifier generated by the
trained XInsight model, with MUTAG class probabilities according to the trained
proxy. Colors represent UMAP clusters of graph embeddings for the generated com-
pounds. Blue: Group 1, Red: Group 2, Yellow: Group 3, Purple: Group 4, Orange:
Group 5. (Color figure online)

Knowledge Discovery. Quantitative Structure-Activity Relationship (QSAR)
modeling is a well-established methodology that is used to differentiate between
mutagenic and non-mutagenic compounds, which have been identified by the
Ames test [14]. Various features of typical drugs, such as lipophilicity, polariz-
ability, hydrophilicity, electron density, and topological analysis, have been uti-
lized in the literature to establish QSAR models for mutagenicity [35]. Among
these features, lipophilicity has been identified as a major contributing factor for
mutagenicity, as it facilitates the penetration of lipophilic compounds through
cellular membranes.

To establish a relationship between the clusters of compounds generated by
XInsight and their mutagenicity, we calculated the lipophilicity of all the gener-
ated structures using the XLOGP3 method [6], samples shown in Fig. 4. This
method has been shown to provide reliable results that are comparable to those
obtained using the calculation of the octanol water partition coefficient for logP
[37]. It is essential to note that we added hydrogens to O (-OH) and N (-NH2)
groups to represent the aqueous environment within the human body, since hydro-
gen atoms were not included in the building blocks for the MUTAG dataset.

In Fig. 5 we see that in general the lipophilicity value is higher for the gen-
erated mutagenic compounds compared to the non-mutagenic compounds. We



314 E. Laird et al.

Fig. 3. Generated graph embeddings projected onto 2-dimensional plane using UMAP.
UMAP was fit using the cosine similarity metric, 2 neighbors, and a minimum distance
of 0.1.

Fig. 4. Lipophilicity calculations for 10 of the clustered compounds generated by XIn-
sight using the XLOGP3 method. Surface mesh and 3 dimensional structures were
generated by Chimera visualization software [29].

observed that the highest lipophilicity was associated with compounds of Group
4 (purple), followed by those of Group 2 (red) and Group 3 (yellow). The pur-
ple cluster exhibited significant differences in lipophilicity when compared to the
red and yellow clusters, which explains why purple is a distinct cluster. However,
groups 1 (blue) and 5 (orange) showed lower levels of lipophilicity values but still
exhibited significant differences. Thus, lipophilicity appears to be a factor related
to the mutagenicity of these compounds.



XInsight 315

Knowledge Verification. To verify that the discovered relationship between
lipophilicity and mutagenicity is valid, we randomly sampled 32 compounds
from the MUTAG dataset, with 16 compounds for each class, and calculated
lipophilicity for each. We then performed a t-test to determine whether there
is a statistically significant difference in lipophilicity for mutagenic and non-
mutagenic compounds. In Table 1 we show a statistically significant difference
between the mean lipophilicity values for the mutagenic and non-mutagenic
classes, thus verifying that the relationship uncovered using XInsight’s generated
distribution is a true relationship exhibited in the training data. Additionally,
this shows how XInsight can be used to discover knowledge about the model.

Fig. 5. XLOGP3 Lipophilicity values for UMAP clustered compounds colored by group
with classified labels, Mutagenic: M, Non-Mutagenic: NM. (Color figure online)

Further Insights. The distribution of explanations provided us with another
significant insight, which is that the compounds in Group 1 (blue) and Group 5
(orange) have low lipophilicity, even though Group 1 is classified as mutagenic
and Group 5 as non-mutagenic. This raises two possible assumptions: first, the
classifier might be incorrectly classifying compounds that are similar to those
in Groups 1 as mutagenic, or second, there might be another underlying factor
that is responsible for the hydrophilic nature of these compounds. Furthermore,
as mentioned earlier, lipophilicity is not the only factor determining the muta-
genicity of the compounds. To explain the clustering of the Group 1, additional
quantum-mechanical calculations are necessary.

This analysis underscores the considerable advantages of generating a distri-
bution of explanations, as opposed to a single explanation that maximizes the
reward. By having a distribution of explanations, we can uncover hidden insights
into what the classification model associates with the target class. Without a
distribution of explanations, we are restricted in the types of analysis we can
perform to more effectively explain the model being examined.



316 E. Laird et al.

Table 1. t-test results showing a statistically significant difference between Mutagenic
and Non-Mutagenic lipophilicity values for 32 randomly sampled compounds from the
MUTAG dataset, α = 0.05.

Mutagenic Non-Mutagenic

Mean 4.1444 2.1750

Variance 0.6812 1.3963

t-statistic −5.2917

p-value 0.00001022

6 Conclusion

In this paper, we proposed XInsight, a novel explainability algorithm for graph
neural networks, that generates a diverse set of model explanations using Genera-
tive Flow Networks. Our approach is designed to provide human-understandable
explanations for GNNs that uncover the hidden relationships of the model. We
demonstrated the effectiveness of XInsight by generating explanations for GNNs
trained for two graph classification tasks, including the classification of acyclic
graphs and the classification of mutagenic compounds. Our results indicate that
XInsight uncovers underlying relationships and patterns demonstrated by the
model, and provides valuable guidance for further analysis.

Our findings emphasize the importance of generating a diverse set of explana-
tions, as it enables us to discover hidden relationships in the model and identify
important features in the data. Furthermore, we show that the generated expla-
nations from XInsight can be used in combination with data mining and chemi-
cal analysis methods to uncover relationships within the model. For instance, we
analyzed the generated compounds from XInsight using QSAR modeling, and
we observe that XInsight generates compounds that cluster by Lipophilicity, a
known correlate of mutagenicity.

Overall, XInsight provides a promising direction for developing explainable
AI algorithms for graph-based applications, with implications for many real-
world domains. We believe that XInsight has the potential to make a significant
impact in various real-world domains, particularly in high-stakes applications,
such as drug discovery, where interpretability and transparency are essential.

References

1. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.:
Graph-based deep learning for medical diagnosis and analysis: past, present and
future. Sensors 21(14), 4758 (2021). https://doi.org/10.3390/s21144758. https://
www.mdpi.com/1424-8220/21/14/4758

2. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Mueller,
K.R.: How to explain individual classification decisions (2009). https://doi.org/10.
48550/arXiv.0912.1128. http://arxiv.org/abs/0912.1128. arXiv:0912.1128



XInsight 317

3. Bengio, E., Jain, M., Korablyov, M., Precup, D., Bengio, Y.: Flow net-
work based generative models for non-iterative diverse candidate genera-
tion (2021). https://doi.org/10.48550/arXiv.2106.04399. http://arxiv.org/abs/
2106.04399. arXiv:2106.04399

4. Bengio, Y., Lahlou, S., Deleu, T., Hu, E.J., Tiwari, M., Bengio, E.: GFlowNet
Foundations (2022). https://doi.org/10.48550/arXiv.2111.09266. arXiv:2111.09266

5. Bongini, P., Bianchini, M., Scarselli, F.: Molecular graph generation with Graph
Neural Networks. Neurocomputing 450, 242–252 (2021). https://doi.org/10.1016/
j.neucom.2021.04.039. http://arxiv.org/abs/2012.07397, arXiv:2012.07397

6. Cheng, T., et al.: Computation of octanol-water partition coefficients by guiding
an additive model with knowledge. J. Chem. Inf. Model. 47(6), 2140–2148 (2007).
https://doi.org/10.1021/ci700257y. https://pubs.acs.org/doi/10.1021/ci700257y

7. Debnath, A.K., Lopez De Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. Correlation with molecular orbital energies and hydrophobicity.
J. Med. Chem. 34(2), 786–797 (1991). https://doi.org/10.1021/jm00106a046

8. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional net-
works. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4829–4837. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.
1109/CVPR.2016.522

9. Fan, W., et al.: Graph Neural Networks for Social Recommendation
(2019). https://doi.org/10.48550/arXiv.1902.07243. http://arxiv.org/abs/1902.
07243. arXiv:1902.07243

10. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from
vectorized representation (2020). https://doi.org/10.48550/arXiv.2005.04259.
arXiv:2005.04259

11. Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular
graphs (2022). https://doi.org/10.48550/arXiv.2003.03123. http://arxiv.org/abs/
2003.03123. arXiv:2003.03123

12. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural mes-
sage passing for quantum chemistry (2017). https://doi.org/10.48550/arXiv.1704.
01212. arXiv:1704.01212

13. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx (2008). https://www.osti.gov/biblio/960616

14. Honma, M., et al.: Improvement of quantitative structure-activity relationship
(QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR
International Challenge Project. Mutagenesis 34(1), 3–16 (2019). https://doi.
org/10.1093/mutage/gey031. https://academic.oup.com/mutage/article/34/1/3/
5142926

15. Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., Chang, Y.:
GraphLIME: local interpretable model explanations for graph neural net-
works (2020). https://doi.org/10.48550/arXiv.2001.06216. http://arxiv.org/abs/
2001.06216. arXiv:2001.06216

16. Jain, M., et al.: Biological sequence design with GFlowNets (2022). https://arxiv.
org/abs/2203.04115v2

17. Laird, E.: Acyclic graph dataset. https://github.com/elilaird/acyclic-graph-
dataset

18. Li, Y., Qian, B., Zhang, X., Liu, H.: Graph neural network-based diagnosis pre-
diction. Big Data 8(5), 379–390 (2020). https://doi.org/10.1089/big.2020.0070.
https://www.liebertpub.com/doi/10.1089/big.2020.0070



318 E. Laird et al.

19. Lu, H., Uddin, S.: A weighted patient network-based framework for predict-
ing chronic diseases using graph neural networks. Sci. Rep. 11(1), 22607
(2021). https://doi.org/10.1038/s41598-021-01964-2. https://www.nature.com/
articles/s41598-021-01964-2

20. Luo, D., et al.: Parameterized explainer for graph neural network. In: Proceedings
of the 34th International Conference on Neural Information Processing Systems.
NIPS 2020, Curran Associates Inc., Red Hook, NY, USA (2020)

21. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 5188–5196. IEEE, Boston, MA, USA (2015). https://doi.org/10.
1109/CVPR.2015.7299155

22. Malkin, N., Jain, M., Bengio, E., Sun, C., Bengio, Y.: Trajectory balance:
improved credit assignment in GFlowNets (2022). https://doi.org/10.48550/arXiv.
2201.13259. http://arxiv.org/abs/2201.13259. arXiv:2201.13259

23. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction (2020). https://doi.org/10.48550/arXiv.1802.
03426. arXiv:1802.03426

24. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs (2020).
https://doi.org/10.48550/arXiv.2007.08663. arXiv:2007.08663

25. Narla, A., Kuprel, B., Sarin, K., Novoa, R., Ko, J.: Automated classifica-
tion of skin lesions: from pixels to practice. J. Invest. Dermatol. 138(10),
2108–2110 (2018). https://doi.org/10.1016/j.jid.2018.06.175. https://linkinghub.
elsevier.com/retrieve/pii/S0022202X18322930

26. Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play gen-
erative networks: conditional iterative generation of images in latent space. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3510–3520. IEEE, Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.374

27. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 427–436. IEEE, Boston,
MA, USA (2015). https://doi.org/10.1109/CVPR.2015.7298640

28. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill 2(11), e7
(2017). https://doi.org/10.23915/distill.00007

29. Pettersen, E.F., et al.: UCSF chimera?A visualization system for exploratory
research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004). https://doi.
org/10.1002/jcc.20084. https://onlinelibrary.wiley.com/doi/10.1002/jcc.20084

30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:
Grad-CAM: visual explanations from deep networks via gradient-based localiza-
tion. Int. J. Comput. Vis. 128(2), 336–359 (2020). https://doi.org/10.1007/s11263-
019-01228-7. http://arxiv.org/abs/1610.02391. arXiv:1610.02391

31. Sheng, Z., Xu, Y., Xue, S., Li, D.: Graph-based spatial-temporal convolutional
network for vehicle trajectory prediction in autonomous driving. IEEE Trans.
Intell. Transp. Syst. 23(10), 17654–17665 (2022). https://doi.org/10.1109/TITS.
2022.3155749. http://arxiv.org/abs/2109.12764. arXiv:2109.12764

32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps (2014). https://doi.org/
10.48550/arXiv.1312.6034. arXiv:1312.6034

33. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net (2015). https://doi.org/10.48550/arXiv.1412.6806.
http://arxiv.org/abs/1412.6806. arXiv:1412.6806



XInsight 319

34. Tan, Q., Liu, N., Hu, X.: Deep representation learning for social network analy-
sis. Front. Big Data 2, 2 (2019). https://doi.org/10.3389/fdata.2019.00002.https://
www.frontiersin.org/article/10.3389/fdata.2019.00002/full

35. Tuppurainen, K.: Frontier orbital energies, hydrophobicity and steric factors
as physical QSAR descriptors of molecular mutagenicity. A review with a case
study: MX compounds. Chemosphere 38(13), 3015–3030 (1999). https://doi.
org/10.1016/S0045-6535(98)00503-7.https://linkinghub.elsevier.com/retrieve/pii/
S0045653598005037

36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., Bengio, Y.:
Graph attention networks (2018). https://doi.org/10.48550/arXiv.1710.10903.
arXiv:1710.10903

37. Viana, R.D.S., Aquino, F.L.T.D., Barreto, E.: Effect of trans -cinnamic acid and
p -coumaric acid on fibroblast motility: a pilot comparative study of in silico
lipophilicity measure. Nat. Prod. Res. 35(24), 5872–5878 (2021). https://doi.org/
10.1080/14786419.2020.1798664. https://www.tandfonline.com/doi/full/10.1080/
14786419.2020.1798664

38. Vu, M.N., Thai, M.T.: PGM-explainer: probabilistic graphical model expla-
nations for graph neural networks (2020). https://doi.org/10.48550/arXiv.2010.
05788.arXiv:2010.05788

39. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filter-
ing. In: Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 165–174 (2019). https://doi.org/
10.1145/3331184.3331267. http://arxiv.org/abs/1905.08108. arXiv:1905.08108

40. Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval. pp. 726–735 (2021). https://doi.org/10.1145/3404835.
3462862. http://arxiv.org/abs/2010.10783. arXiv:2010.10783

41. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Net-
works? (2019). https://doi.org/10.48550/arXiv.1810.00826. arXiv:1810.00826

42. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: gener-
ating explanations for graph neural networks. In: Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems. Curran Associates
Inc., Red Hook, NY, USA (2019)

43. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp. 974–983 (2018). https://doi.org/10.1145/3219819.3219890.
http://arxiv.org/abs/1806.01973. arXiv:1806.01973

44. You, J., Liu, B., Ying, R., Pande, V., Leskovec, J.: Graph convolutional policy
network for goal-directed molecular graph generation. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pp. 6412–
6422. NIPS 2018, Curran Associates Inc., Red Hook, NY, USA (2018)

45. Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of
graph neural networks. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 430–438. ACM, Virtual
Event CA USA (2020). https://doi.org/10.1145/3394486.3403085

46. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural net-
works: a taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 1–
19 (2022). https://doi.org/10.1109/TPAMI.2022.3204236. https://ieeexplore.ieee.
org/document/9875989/



320 E. Laird et al.

47. Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville, A., Bengio, Y.: Generative
flow networks for discrete probabilistic modeling (2022). https://arxiv.org/abs/
2202.01361v2

48. Zhang, H., Lu, G., Zhan, M., Zhang, B.: Semi-supervised classification of graph con-
volutional networks with Laplacian rank constraints. Neural Process. Lett. 54(4),
2645–2656 (2022). https://doi.org/10.1007/s11063-020-10404-7

49. Zhang, Z., et al.: Graph neural network approaches for drug-target interactions.
Curr. Opin. Struct. Biol. 73, 102327 (2022). https://doi.org/10.1016/j.sbi.2021.
102327. https://linkinghub.elsevier.com/retrieve/pii/S0959440X2100169X


