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Formulae for the analytical differentiation of the energy contribution due to triple excitations (T) within quadratic conftgura- 
tion interaction (QCI) theory are derived. Combining these formulae with previously derived formulae for the evaluation of 
analytical first derivatives for QCI theory with single (S) and double excitations (D), au algorithm is developed to calculate 
analytical QCISD (T) energy gradients. The applicability of this algorithm is demonstrated by calculating the equilibrium geom- 
etry ofCH,OO at the QCISD(T)/631G(d, p) level oftheory. 

1. Introduction 

Pople, Head-Gordon and Raghavachari introduced a new method for the calculation of the electron cor- 
relation energy starting from the single determinant approach of Hartree-Fock (HF) theory [ 11. The authors 
called this method quadratic configuration interaction (QCI) since they derived it from normal configuration 
interaction theory by adding new terms which are quadratic in the configuration coefficients. The quadratic 
terms ensure size-consistency in the total molecular energy [ 11. When only single (S) and double (D) ex- 
citations are included in the QCI approach (QCISD), it is closely related to coupled cluster (CC) theory at 
the CCSD level [ 21. Pople and co-workers have stressed the simplicity of QCISD as compared to CCSD and 
have considered QCISD as an intermediate approach between CC and CI theory. The relationship between 
QCISD and CCSD has been analyzed by Paldus, Ciiek and Jeziorski [ 31 and the computational requirements 
of the two methods by Scuseria and Schaefer [ 41. 

In their original paper, Pople and co-workers also introduced a useful approximation for handling triple ex- 
citations (T) at the QCI level of theory [ 11. They treat the triple excitations as a small perturbation of the 
solution obtained at the QCISD level. Perturbation theory yields for the energy correction due to the triples 
the term hE( T) (see below) which is simply added to the QCISD energy to yield a QCISD( T) energy. Com- 
parison of QCISD (T) results with those of full CI and other methods have led to promising results in a number 
of cases [ 11. 

We have presented analytical formulae for the energy gradient within QCISD theory [ 51. We have also de- 
veloped expressions for the analytical gradient of the energy contribution due to triple excitations within fourth- 
order Moller-Plesset (MP4) perturbation theory [6]. We have implemented these formulae in a computer 
program and have discussed the advantage of using analytical gradients for QCISD and MP4( SDTQ) theory 
[ 5,6]. In this work we extend our previous results by presenting the theory for the analytical differentiation 
of the triple correction AE(T) within QCISD(T) theory introduced by Pople and co-workers [ 11. 
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2. Theory 

The energy correction due to triple excitations in QCISD(T) theory is given by 

M(T)=&, 1 C d(ijk,abc) [~(ijk,abc)+2B(ijk,abc)]. 
ijk abc 

(1) 

The matrix elements in eq. ( 1) are defined as 

w(i$,abc)= 2 [a~d(bc~~dk)+af;d(ca~~dk)+a~(ab~~dk)+a~~(bc~ldj)+a~~(calldj> 
d 

+af~(bm~ki)ta~~{cm~~ij;tu~~(um~~ijjta~~(bmllij)], (2) 

d(ijk,UbC)=w(ijk,UbC)/(c,tEj+tk-E,-~b-~,): (3) 

Li’(ijk,ubc)=up~k~~bc>+a~(jk~~cu>taf(jk~~ub)+u~(killbc>ta,b(ki~lcu) 

+af(ki~~ub)tu~(ij~~bc)+u~(ij~lca)tu~(~llab> ) (4) 

d(ijk,ubc)=~(ijk,abc)/(~,tt,t~k--t,-~b--E,). (5) 

In eqs. (2) to (5), the symbols up and utb represent the converged QCISD amplitudes of single and double 
excitations, respectively. The double-bar integrals (pql[rs) correspond to antisymmetrized two-electron in- 
tegrals in the spin-orbital representation: 

with pO being a HF spin orbital and t, being the corresponding orbital energy. The labels i, j, k, . . denote OC- 

cupied orbitals, labels a, b, c, . . . virtual orbitals and labels p, q, r, . . . any orbital either occupied or not. 
Differentiation of eq. ( 1) with respect to an external perturbation parameter A, e.g. the displacement of a 

nuclear coordinate or the component of a static electric field, leads to the following expression for the gradient 
of the energy correction MY(T) in QCISD(T) theory: 

d[AE(T)]/&=& 11 w(ijk,abc)h[2d(ijk,abc)t2~(ijk,uhr)]+$ C C G(jjk,abc)“2d(ijk,ubc) 
i/k abc rjk abc 

- h 1 1 &,d( ijk, ubc) [ d( ol, ubc) + 2a( ijl, abc) ] t h 2 Jd &a’( ijk, ubc) [d( ijk, ubd) t 2d( ijk, abd) ] , 
ijkl abc 

(7) 

with w(ijk, a!~)“, & etc. being the derivative of the elements of w, E, etc. with respect to 2. 
In order to avoid singularities in the evaluation of eq. (7) the derivatives of the Lagrangian multipliers t, 

rather than those of the canonical orbital energies are calculated [ 71. Substitution of eqs. (2) and (4) into 
eq. (7 ) leads to 

d[hE(T)]/di=~CC[a~~]duT(ij,ab)+2CC(ijl)kuj”r(ijk,u)+2CC (ia))bc)“s(i,abc) 
ij ah rjk a i nbc 

(8) 

where [a:]” and [a$]’ denote the derivatives of the amplitudes a: and u$ with respect to II. 
The matrices VT, r, s, t. and u are defined in the following way: 
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V~(f-j,ab)=f;; [(cd~lbk)~d(~k,acd)+a(~k,acd)}-(cd~~uk){d(~k,bcd)+a(~k,bcd)}] 

+ t z T [ (cj]l kl) {d(ik/, abc) t d( ikl, ahc)} - (cillkl) {d(jkl, abc) +d(jkl, ah)}] , 

r(~k,a)=f$~n${d(~jl,abc)+~(ijl,abc)}, 

s(i,ubc)=d; ~u,“,d(d(ijk,hcd)td(lik,bcd)}, 

(9) 

(10) 

(11) 

t(p, q)=& 1 1 d(ikl, ubc){d(jkl,abc) td(jk!, abc)}? forp=iand q=j, (12a) 
kl abc 

=&~~d(ijk,acd){d(ijk,bcd)+i?(ijk,bcd)}, forp=aandq=b, 

u(ij, ub) = 1 1 d(ijk, abc) ui : 
k c 

(12b) 

(13) 

Mi,a)=i ;; d(ijk,abc)(jkI lbc) . (14) 

The formula for the first derivative of a(T) with respect to an external perturbation I is very similar to 
the previously derived expression for the analytical gradient of the corresponding energy correction within fourth- 
order Moller-Plesset (MP4) perturbation theory [ 61. Differences in the two formulae are due to (a) the dif- 
ferent definitions of the amplitudes u$~ and a; in QCI and MP theory and (b) the additional coupling of single 
and triple excitations present in QCI theory but absent in MP4 theory. This coupling leads to terms involving 
r+(i, a) and u(ij, ub) in eq. (8) as well as to the terms d(ijk, abc) in eqs. (9) to (12). 

As has already been stressed in connection with the evaluation of the QCISD gradients [ 5 1, explicit cal- 
culation of the derivatives of the amplitudes up and atb is very time consuming and should be eliminated uti- 
lizing the z-vector method of Handy and Schaefer [ 81. While the coupled perturbed QCI equations that are 
required to determine the derivatives of ai and uzb, in eq. (8) are identical in QCISD and QCISD(T) theory, 
the corresponding z-vector equations are not. Here, additional terms resulting from the derivatives of up and 
u* have to be added to the inhomogeneous terms. Within QCISD( T) theory the z-vector equations are given 
b; 

5; ~z,“C~f+j~~b~~z~~C,hi;“=vr(i,u), (15a) 

; ; z;C2,$+ ~~,~~~~~~C~~~=(ubllij)+2v~(rj,ub). (15b) 

For a definition of the various C terms in eq. ( 15) and a full account of the use of the z-vector method in 
QCI gradient theory compare with ref. [ 5 1. 

The contribution of triple excitations to the QCISD (T) gradient comprises two terms, one which is included 
already in the QCISD energy gradient (after modifying the z-vector equations as described above) and one 
which is given by additional terms containing derivatives of the two-electron integrals and the orbital energies: 

dE[QCISD(T))/dLdE[QCISD]/dJ+2 2; (ij~~ku)“r(ijk,u)tZ~ 2 (iallbc)4(i,ubc) 

Eq. (16) can be rearranged into a form containing only A0 integral derivatives, namely the derivatives of 
the two-electron integrals ( pv 1 1 up), of the one-electron integrals hclU, and of the overlap integrals S,,. In ad- 
dition, one needs the derivatives U$ of the spin-orbital coefficients Cam as they are defined in the usual coupled- 

551 



Volume 163, number 6 CHEMICAL PHYSICS LETTERS 24 November I989 

perturbed HF (CPHF) theory [ 9,101. The solution of the CPHF equations is avoided by again using the z- 
vector method [ 81. The QCISD(T) energy gradient can be written as 

dE[QCISD(T)ll~= 1 ~,,,(,Wb)“+ 1 ~,A”;,+ C C,,S;l,v a (17) 
WV W PV 

where Tfluop, D,,", C,, are independent of the perturbation 1, but dependent on the solution of the z-vector 
equations. 

3. Implementation 

Computer programs for the analytical evaluation of the energy correction due to triple excitations in QCI 
theory have been written and combined with the existing programs for the evaluation of the analytical QCISD 
gradient [ 51 contained in the program system COLOGNE [ 1 I 1. Since the evaluation of the various terms of 
the QCISD(T) gradient is similar to those needed for MP4(T) gradients [ 61 the implementation follows the 
same procedure described in our paper on the calculation of the analytical energy gradient for MP4 (SDTQ) 
[ 61. In this procedure, storage of the arrays d( ijk, abc) and d( ijk, abc) is avoided by using a direct algorithm 
for the computation of nr(ij, ab), r.+(i, a), r(ijk, a), s(i, abc), t(p, q) and u(zj, ab). This means that the ap- 
propriate contributions of the triple amplitudes to these arrays is immediately evaluated when the correspond- 
ing triple amplitudes have been determined. 

The solution of the z-vector equations within coupled-perturbed QCI theory as well as the evaluation of the 
terms for the QCISD gradients has been described in ref. [ 51. This procedure has been modified to incorporate 
the additional inhomogeneous terms in the z-vector equations. The programs for the analytical evaluation of 
the QCISD(T) gradients have been carefully checked by comparing results with those obtained by numerical 
differentiation. Calculation of the analytical QCISD(T) gradient turns out to require 3-4 times the costs of 
a QCISD(T) single-point calculation. This has also been found in the case of the analytical MP4( SDTQ) gra- 
dient [6]. 

4. Application 

To illustrate the applicability and usefulness of our program for the evaluation of analytical QCISD( T) en- 
ergy gradients we have calculated the equilibrium geometry of carbonyl oxide, CH*OO, employing the 6-3 1 G( d, 
p) basis set [ 121, CH,OO is a 1,3-dipolar species that is formed as an important intermediate during the ox- 
idation of unsaturated hydrocarbons by ozone [ 13,141. Its electronic properties are best described by the res- 
onance structures l-6 shown in scheme 1 [ 15 1. Resonance structure 1 corresponds to a 1,3 x,n-biradical while 
resonance structures 2 and 3 describe a 1,3 zwitterion. Structures 4, 5 and 6 are probably of less importance 
for the wavefunction of CH*OO [ 15 1. 

Restricted HF calculations exaggerate the zwitterionic character of CH*OO as is clearly revealed by the HF/ 
6-3lG(d, p) geometry shown in table 1. The CO bond length is rather short comparable to that found for 
formaldehyde, CH20, while the 00 bond length is close to that found for 00 bonds in peroxides [ 13,141. 
Hence, the HF geometry of CH,OO is best described by resonance structure 2. 

Inclusion of correlation effects leads to a lengthening of the CO bond and a shortening of the 00 bond. The 
resulting geometry is typical of I ,3-dipolar species with significant biradical character, i.e. correlation increases 
the importance of resonance structure 1. Table 1 lists geometries and energies of CH*OO computed with an- 
alytical gradients at four different levels of theory, namely MP2 [ lo], MP4(SDQ) [ 161, MP4(SDTQ) [ 61, 
and QCISD (T). The calculated geometries differ considerably from the HF geometry. Furthermore, they re- 
veal that the heavy atom bond lengths are very sensitive to the method used. Therefore, the predictions of the 
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Table 1 
Geometries and energies of CH,OO calculated with the 6-31G(d, p) basis at various levels of theory a) 

Parameter HF MP2 MP4( SDQ) MP4(SDTQ) QClSD(T) 

NC01 1.201 1.297 
R(OO) 1.481 1.294 
R(W) 1.079 1.078 
R(W) 1.080 1.074 
a(CO0) 114.5 120.4 
m(H,CO) 119.7 118.2 
a(H,CO) 118.6 114.1 
E - 188.56252 - 189.06865 
E(corr) C) -0.52467 

a) Bond lengths R in A, bond angles a in deg, energies in hartree. 
‘) E(corr) denotes the calculated correlation energy. 

1.275 
1.329 
1.078 b’ 
1.074 b’ 

119.2 
118.6 
115.3 

- 189.08662 
-0.53546 

b, Assumed values. 

1,314 1.287 
1.306 1.356 
1.081 1.080 
1.077 1.078 

119.8 119.1 
118.3 118.8 
114.3 115.3 

- 189.10975 -189.11139 
-0.56846 -0.56151 

various methods with regard to the electronic structure of CH200 are best discussed on the basis of the cal- 
culated heavy-atom bond lengths. 

At MP2, the CO and 00 bond lengths are almost identical, suggesting that biradical character (resonance 
structure 1) dominates the electronic structure of the molecule. This is not unexpected since MP2 is known 
to overestimate the biradical character of 1,3-dipolar species [ 14,171. At MP4( SDQ), the CO bond is cal- 
culated to be 0.02 8, shorter and the 00 bond length 0.03 A longer than the corresponding MP2 values, re- 
flecting the increased zwitterionic character and a stronger contribution of resonance structure 2 to the wave- 
function at this level of theory. 

When triple excitations are included at the MP4 level, the geometry of CH*OO changes in an unexpected 
way. The alternation in the heavy-atom bond lengths is again reduced due to a lengthening of the CO bond 
by 0.04 .& and a shortening of the 00 bond by 0.02 A relative to the MP4 (SDQ) values. In this way, the CO 
bond becomes slightly longer than the 00 bond, indicative of an admixture of resonance structure 4 to res- 
onance structure 1. This result contradicts the known properties of carbonyl oxides, which suggest an electronic 
structure of CH,OO close to either 2 or 3. 

An answer to the question as to whether the MP4(SDTQ) results are chemically relevant is given by the 
QCISD(T) calculations. The QCISD(T)/6_31G(d, p) energy ofCH,OO is 1.64 mhartree below that obtained 
at the MP4(SDTQ)/6_31G(d, p) level of theory (table 1). The QCISD(T) correlation energy is -0.56151 
hartree, which has to be compared with a MP4(SDTQ) correlation energy of -0.56846 hartree. At the 
QCISD(T) level, the CO bond length decreases to 1.287 a while the 00 bond length increases to 1.356 A 
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(table 1). Hence, the ratio of the heavy-atom bond lengths clearly predicts the importance of resonance struc- 
tures 2 and 3 for the electronic structure of CH200 in line with the experimental observations. We conclude 
that the QCISD(T) description of CH200 is more reliable than the MP4(SDTQ) description. 
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