Electronic Structure and Thermal Stability of Thiepins. Photoelectron Spectroscopic Investigations

Rolf Gleiter,*+ Gerhard Krennrich,‡ Dieter Cremer,§ Kagetoshi Yamamoto,∥ and Ichiro Murata△

Abstract: The He I photoelectron (PE) spectra of 2,7-di-tert-butylthiepin (1a), as well as its 4-methyl (2a) and 4,5-dimethyl (3a) derivatives, together with thieno[3,4-d]thiepin (5) have been investigated. The assignment of the first bands is based on empirical considerations and model calculations (MNDO and ab initio). The first bands in 1a–3a and 5 are assigned to ionizations from σ-orbitals. Model calculations suggest furthermore that the influence of different substituents (COOR, alkyl) on the thermal stability of thiepin is mainly a steric one, whereas electronic effects are responsible for the thermal stability of 5.

A comparison of the thermal stability of the three hetero-8r systems oxepin, azepine, and thiepin reveals that the latter is the most elusive. The pronounced instability of this system is rationalized as due to the low activation energy for the extrusion of sulfur. With the synthesis of the thermally stable 2,7-di-tert-butylthiepin (1a) and a relatively simple derivative of thiepin is available which allows one to study its chemical and physical properties.

In this paper we report the He I photoelectron spectra of 1a, two further methyl substitution products 2a and 3a,† as well as thieno[3,4-d]thiepin (5).‡ To aid the spectral assignments we also investigated the partially hydrogenated products 4a§ and 6.∥

Besides assigning the first ionic states of 1–6 we were interested in a satisfactory description of the ground state of thiepin (7) itself. This in turn should uncover the reasons for the differences in thermal stability (expressed in their half lives \(\tau_{1/2} \)) of the thiepins 1a–3a and 8a–11a shown in Table I as well as the great difference between thiepin and 5.△

PE Spectroscopic Investigations of 1–4

In Figure 1 we show the He I photoelectron spectra of 1a–4a. The PE spectra of 1a–3a show one band around 7.5 eV followed by two strongly overlapping bands around 9 eV and a fourth one

Table I. Half-Lives of the Thiepins 1a–3a as well as 8a–11a. The Half-Lives Were Determined in Toluene-d₈ at 130 °C

<table>
<thead>
<tr>
<th>compd</th>
<th>(\tau_{1/2}) h</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>>1000</td>
</tr>
<tr>
<td>1a</td>
<td>365</td>
</tr>
<tr>
<td>9a</td>
<td>254</td>
</tr>
<tr>
<td>10a</td>
<td>157</td>
</tr>
<tr>
<td>2a</td>
<td>105</td>
</tr>
<tr>
<td>3a</td>
<td>15</td>
</tr>
<tr>
<td>11a</td>
<td>7</td>
</tr>
</tbody>
</table>

close to 10 eV. Neither of these peaks shows any fine structure. A strong effect upon methyl substitution is found in the case of band 2 and band 3 so far as in 2a and 3a the separation between bands 2 and 3 is enlarged and band 3 is clearly shifted toward lower energy. The most pronounced difference between the PE spectra of 1a–3a and that of 4a is the missing of one band around 9 eV (see Figure 1). From our previous experience with the PE spectra of σ-systems containing sulfur we can safely assume that the bands below 10.5 eV are due to ionizations from σ-orbitals. For a more quantitative treatment we assume that the negative orbital energy calculated for the ground state \((-\varepsilon)\) can be set equal to the measured ionization energy \((I_0)\). This approximation seems to hold well for large organic systems like 1–6 if we restrict ourselves to the first ionic states only.

To derive the orbital energies of 1–3 we proceed in two ways: (i) we try empirically to assign the first bands by correlating them with those of related PE spectra or (ii) we compare the spectral data with results of MO calculations.

Empirical Assignment

X-ray investigations on 1a show that the thiepin ring is boat shaped, with dihedral angles of \(\alpha = 49.6° \) and \(\beta = 28° \) between the plane formed by C(2), C(3), C(6), C(7) and the plane S, C(2), C(7) and the plane C(3), C(4), C(5), C(6), respectively. Furthermore, a considerable alternation among the C–C bond lengths is found. These results imply that a simple HMO model with just one or two \(\beta \)-parameters seems inappropriate to treat the σ-system in 1–3. A proper starting point to estimate the orbital energies

(7) Koopman, T. Physica 1934, 1, 104.
To derive the MO's of 1 we replace in the cyclic triene system the CH₂ bridge by a sulfur. To estimate the approximate orbital energies for 1 we have to correct the orbital energies (negative values of the ionization energies) of our triene model for the effect of two tert-butyl groups (inductive and hyperconjugative effect) and the hyperconjugative effect of the C-S σ bonds. This latter effect is judged to be considerable especially for the lowest lying π-orbital (a') since PE studies on simple alkyl sulfides suggest a value of 10.6 eV for the C-S σ-bond which is close to that found for the third band (a'(π)) in 12. This discussion reveals that the energy of all the π-MO's of 12, especially the lowest one, has to be shifted toward higher energy in 1. In Figure 2 we have adopted the values −8.0, −9.2, and −10.0 eV, as shown on the right side. To construct an interaction diagram for 1a we have to assess the basis orbital energy of the sulfur center in 1 which we assume to be −9.4 eV as in previous studies. For reasons of symmetry the 3p lone pair on sulfur may interact with the two MO's of the hexatriene system belonging to the irreducible representation A'. This interaction yields the three MO's 14a', 13a', and 12a' as shown in Figure 2. According to this figure we expect two MO's around 9.3 eV close together and well separated from the other ones with strong π-character. The PE spectrum of 1a is in line with these qualitative arguments. Furthermore, the size of the coefficients at positions 4 and 5 of 13a' and 10a'' allows us also to rationalize the observed shift when comparing the positions of

![Figure 1. PE spectra of 1a-4a.](image1)

![Figure 2. Qualitative interaction diagram between the π-MO's of a perturbed hexatriene (right) and a 3p-orbital of S (left) to yield the highest occupied MO's of 2,7-dimethylthiepin (1b).](image2)

the bands in the PE spectrum of 1a with those of 2a and 3a. Using first-order perturbation theory(12) we anticipate a larger shift for 13av compared to that of 10av. These arguments favor the assignment of a' to band 2 and a'' to band 3 (see also Figure 3a) in the spectra of 1a–3a.

Calculations

In addition to the empirical derivation of the highest occupied valence orbitals of 1 we have carried out semiempirical calculations. We restricted ourselves to the MNDO method(14) since MINDO/3(13) did not reproduce the geometrical parameters of 1b–3b satisfactorily as discussed below. For the parent system (7) we also used restricted HF theory employing a STO-3G basis as well as a 44-31G basis for sulfur.(15) Minimizing the heats of formation of the models 1b–3b with respect to all geometrical parameters we find that MINDO/3 predicts an essentially flat molecule. The MNDO method as well as the HF/STO-3G level on the other hand favor a boat shape which parallels the experimental findings.2 The ab initio approach predicts for 7 folding angles $\alpha = 35^\circ$ and $\beta = 26^\circ$ while the MNDO method underestimates these values by 6\textdegree. The underestimation of ring puckering by MNDO is typical for NDO methods (vide infra) but may also be due to an underestimation of the C–S bond length (1.80 \AA1 in 1a,2 1.78 \AA2 HF/STO-3G in 7, but 1.72 \AA, MINDO/3, and 1.69 \AA, MNDO). In view of the pronounced dependence of the folding angles on the bulk of the substituents attached to the thiophen ring, in particular in positions 2 and 7 (see below), and in view of the ab initio results obtained for cycloheptatriene, azepine, and oxepin,10 we consider the STO-3G values to represent a fair description of the degree of puckering of 7. In Table II we have listed the calculated orbital energies of 1b–4b. A comparison with the measured orbital energies of 1a–4a is made in Figure 3 and Table II.

As usual the orbital energies calculated by the MNDO method differ from the ionization energies by about 1 eV. The differences

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
compd & band & μ & ε (STO-3G) & ε (44-31G) & ε (MINDO) \\
\hline
\hline
1a & 1 & 7.7 & π, & 8.71 & \\
 & 2 & 9.3 & π, & 10.58 & \\
 & 3 & 10.2 & π, & 11.49 & \\
2a & 1 & 7.6 & π, & 8.76 & \\
 & 2 & 8.9 & π, & 10.34 & \\
 & 3 & 9.2 & π, & 10.44 & \\
 & 4 & 10.0 & π, & 11.31 & \\
3a & 1 & 7.5 & π, & 8.88 & \\
 & 2 & 8.6 & π, & 10.23 & \\
 & 3 & 8.9 & π, & 10.25 & \\
 & 4 & 9.7 & π, & 11.09 & \\
4a & 1 & 7.7 & π, & 9.25 & \\
 & 2 & 8.9 & π, & 9.98 & \\
 & 3 & 10.1 & π, & 10.28 & \\
\hline
\end{tabular}
\caption{Comparison between the First Vertical Ionization Energies, μ, of 1a–4a and Calculated Molecular Orbital Energies, ε, for 1b–4b (All Values in eV)}
\end{table}

between the energies, however, are reproduced quite well. The sequence predicted empirically differs in the sequence of the two close lying orbitals corresponding to bands 2 and 3 (for 1b, 13av and 10av). To clarify this point we have compared the orbital energies obtained for 7 using the different approaches in Table III. The ab initio results are based on those geometrical parameters calculated with the STO-3G basis set. The MNDO values are based on the structure with minimum heat of formation. We also included in Table III a column containing the results of empirically corrected MNDO orbital energies (MNDO correction) according to a formula given by Dewar et al.(16) This correction

Figure 4. PE spectra of 5 and 6.

Table IV. Comparison between the First Vertical Ionization Energies, I_{1p}, of 5 and 6 with the Calculated Orbital Energies, \(\epsilon \) (All Values in eV)

<table>
<thead>
<tr>
<th>compd</th>
<th>band</th>
<th>assignment</th>
<th>(-\epsilon) (MINDO)</th>
<th>(-\epsilon) (HMO)</th>
<th>(-\epsilon) (MNDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>4a_(a)</td>
<td>7.84</td>
<td>7.48</td>
<td>8.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2a_(a)</td>
<td>8.52</td>
<td>8.51</td>
<td>9.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3b_(a)</td>
<td>9.75</td>
<td>9.64</td>
<td>10.69</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1a_b(a)</td>
<td>10.7</td>
<td>11.13</td>
<td>11.39</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7a_1(a)</td>
<td>7.67</td>
<td>7.92</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6a(a)</td>
<td>8.73</td>
<td>8.9</td>
<td>9.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5a_1(a)</td>
<td>9.38</td>
<td>9.44</td>
<td>10.16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4a_b(a)</td>
<td>11.0</td>
<td>11.19</td>
<td>11.22</td>
</tr>
</tbody>
</table>

Figure 5. Comparison between the first PE bands of azulene and 5.

Figure 6. Schematic reaction diagram for the reaction of thiepin to benzene and sulfur with thianorcaradiene as an intermediate.

onset, typical for planar \(\pi \)-systems. From our previous experience on the PE spectra of \(\pi \)-systems containing sulfur\(^6\) it seems reasonable to assign the bands below 11 eV to ionization events from \(\pi \)-orbitals. To assign the first PE bands in the spectra of 5 and 6 we compare the measured ionization energies with the calculated orbital energies listed in Table IV. To derive the orbital energies we use a HMO model\(^1\), the MINDO/3 method,\(^9\) and the MNDO\(^14\) method. The parameters chosen for the HMO method have been used for other thiophene systems: \(\alpha_a = -9.4 \text{ eV}, \alpha_\alpha = -7.0 \text{ eV}, \beta_\alpha = -1.8 \text{ eV}, \text{ and } \beta_\alpha = -3.0 \text{ eV}\). The HMO model seems appropriate since the deviation from planarity of 5 seems to be much smaller\(^17\), than in the case of 1-3. A comparison between the values obtained by the HMO method and experiment shows a satisfactory agreement. The MINDO/3 method predicts some \(\sigma \) levels between 2\(\alpha_2 \) and 1\(\alpha_3 \) of 5. If we ignore these levels for the reason stated above we find that both methods reproduce the \(\pi \)-levels well.

In an earlier investigation a great similarity of the electronic absorption spectrum of 5 with that of azulene (13) has been found with respect to the energy and polarization direction of the first four bands.\(^17\) This has been rationalized by assuming that the two highest occupied and the two lowest unoccupied \(\pi \)-orbitals of both compounds belong to the irreducible representations \(B_1 \) and \(A_2 \), respectively, and that the energy separation between them is about the same. To demonstrate this at least for the highest occupied MO's we have compared the first PE bands of 5 with those of 13\(^9\) in Figure 5. The wave functions schematically drawn for 5 are derived from a MINDO/3 calculation. This correlation confirms that the energy difference between the first MO's of both compounds is about the same. The lower energy of the first band in the electronic spectrum of azulene (14 300 cm\(^{-1}\))\(^16\) is probably due to a lower \(\pi \)-level in azulene.

Thermal Stability of Thiepins

All attempts to isolate the parent compound 7 have failed so far,\(^1\) a fact which has been rationalized by postulating for 7 antiaromatic character\(^9\)-\(^11\) leading to strong bond alternation. An
additional reason for its instability might be the low activation energy for the sulfur extrusion reaction which might pass thianorcaradiene (14) as an intermediate as shown in (1) followed by a sequence of reactions involving several intermediates in which the number of sulfur atoms increases, ending with benzene and stable forms of sulfur. In Figure 6 we have depicted a possible reaction coordinate, analogous to that discussed by Miller et al. for thieno[3.4-c]-thiophene. It applies to such thiepin derivatives as well as thianorcaradiene form. This is corroborated by the results that the plane of the CHO substituent is predicted to be always perpendicular as calculated MNDO net charges and dipole moments of thiepin (7), thianorcaradiene (14), and the transition state (TS) for Reaction 1.

Electronic Effects

To make the discussion of these effects simple we will subdivide the electronic effects into conjugative and inductive effects. To understand both effects on the thermal stabilities of 1a to 3a and 8a-11a as exemplified by their half-lives in toluene (Table I) we have carried out model calculations on 7 and some simple derivatives with one or two formyl groups in order to mimic the electronic effects into conjugative and inductive effects. To analyze their effects on the stability of thiepin and the norcaradiene form are listed in Table VI. The heats of formation, the differences between the isomers 15-16, 17-18, and 19-20 as well as the difference between

Table VI. Heats of Formation (\(\Delta H_f^0\)) of 7 and 15-20 as well as Relative Heats of Formation for 16, 18, 20 (\(\Delta \Delta H_f^0\)), the Thianorcaradiene Form of 7 and 15-20 (\(\Delta \Delta H_f^0\)(NCD)), and the Transition States (TS; of Figure 6) (\(\Delta \Delta H_f^0\)(TS)) (SCF Results and Correlation Corrected Results (correl corr) Are Given in kcal/mol)

<table>
<thead>
<tr>
<th>compd</th>
<th>(\Delta H_f^0) SCF</th>
<th>SCF correl corr</th>
<th>(\Delta \Delta H_f^0)(NCD)</th>
<th>SCF correl corr</th>
<th>(\Delta \Delta H_f^0)(TS)</th>
<th>SCF correl corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>43.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13.8</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>13.9</td>
<td>-1.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-15.6</td>
<td>-2.7</td>
<td>-1.1</td>
<td>26.9</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-13.6</td>
<td>-2.8</td>
<td>-0.8</td>
<td>25.9</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>30.8</td>
<td>-3.1</td>
<td>-0.7</td>
<td>27.1</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>34.6</td>
<td>-3.3</td>
<td>-0.8</td>
<td>25.1</td>
<td>20.1</td>
<td></td>
</tr>
</tbody>
</table>

Table VII. Calculated MNDO Net Charges and Dipole Moments of Thiepin (7), Thianorcaradiene (14), and the Transition State (TS) for Reaction 1

<table>
<thead>
<tr>
<th>position</th>
<th>7</th>
<th>TS</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.052</td>
<td>0.027</td>
</tr>
<tr>
<td>2,7</td>
<td>-0.121</td>
<td>-0.099</td>
<td>-0.015</td>
</tr>
<tr>
<td>3,6</td>
<td>-0.048</td>
<td>-0.064</td>
<td>-0.073</td>
</tr>
<tr>
<td>4,5</td>
<td>-0.049</td>
<td>-0.049</td>
<td>-0.042</td>
</tr>
<tr>
<td>(\mu[D])</td>
<td>1.52</td>
<td>1.74</td>
<td>2.43</td>
</tr>
</tbody>
</table>

the thiepin and the norcaradiene form are listed in Table VI. For the transition state (TS) in Figure 6 the MNDO(SCF) results as well as correlation corrections of relative energies are listed. The latter have been obtained by carrying out Brillouin-Wigner second-order perturbation theory with Epstein-Nesbet denominators for the SCF wave functions and correcting empirically for quadruple excitations. The inclusion of correlation has been proven to be important for a proper treatment of ground-state properties of \(\pi\)-systems. The results of our model calculations reveal that the electronic effects of the substituents are generally not very large, leading to changes in the relative energies of less than 3 kcal/mol. In none of the compounds are strong conjugative effects observed. This is corroborated by the results that the plane of the CHO substituent is predicted to be always perpendicular.
to the plane of the adjacent thiepin double bond. The calculated OCCC dihedral angles range from 77 to 95°. This suggests that all speculations on the anti- or homoaromatic character of 7 are not relevant when discussing substituent effects on its thermodynamic or kinetic stability. Our findings are in contradiction to HMO results by Hess et al. that electron acceptors should have a significant influence.

For an investigation of the inductive effects of a substituent we use the predicted net charges shown in Table VII. They reveal to HMO results by Hess et al. that electron acceptors should have a significant influence.

For an investigation of the inductive effects of a substituent we use the predicted net charges shown in Table VII. They reveal that negative charge is redistributed from position 2 and 7 to positions 1, 3, and 6 during the valence isomerization of 7 to 14. Accordingly, electron acceptor substituents at positions 3 and 6 should stabilize 14 while the same substituents at positions 2 and 7 should stabilize 7. In line with these arguments are the predicted relative stabilities of the norcaradiene (NCD) forms of 15 and 17 (Table V) since 15 and 17 are examples with an electron acceptor in position 3 as well as 3 and 6, respectively. Also, the values for the activation energy of the valence isomerization decrease in the series 7 (21.7 kcal/mol), 15 (21.1 kcal/mol), 17 (18.6 kcal/mol). Since the ease of sulfur extrusion depends on the barrier to valence isomerization (see Figure 6), the consideration of the inductive effects lets us predict that 7 is more stable than 15 or 17. This, however, provides no explanation of the order of stabilities shown in Table I or the calculated decrease in stability when going from 7 to 16, 18, or 20.

Steric Effects

The folding angles of the thiepin ring are sensitive to steric effects. These effects increase with the bulk of the substituent (tert-butyl > methyl > CHO) and its position. Substituents in positions 2 and 7 show the strongest effect while substituents in positions 3–6 also have a pronounced effect on puckering (see α,β-values in Table V). Taking these facts into consideration we can rationalize the following:

(1) 1a is stable due to the steric repulsion of the tert-butyl groups. This increases the activation energy for sulfur extrusion considerably (Figure 6).

(2) Additional (acceptor or donor) substituents in positions 3 and 6 enhance the steric effect of substituents in positions 2 and 7 by pressing them together. The formation of the norcaradiene form is even more impeded. Although the electronic effect of an acceptor substituent is working in the opposite direction, electronic changes are far too small compared to the steric effects.

(3) Substituents in positions 3(6) and 4(5) of 1a will transfer their steric influence in a "domino" effect onto the tert-butyl groups (see below). Clearly 8a has a much lower tendency for S extrusion and, therefore, is much more stable than 1a.

(4) Two substituents in positions 4 and 5 repel each other. Thus steric strain is relieved by conversion to the norcaradiene form since the 4–5 bond is lengthened. This explains why 2a and 3a with one or two methyl groups in 4 and 5 position are less stable than 1a.

(5) Two aldehyde or ester groups in positions 4 and 5 are also destabilizing because of steric and electrostatic repulsion. The repulsive interactions are, however, lowered by an antiparallel arrangement of the CHO dipoles. This latter effect mitigates the steric repulsion. Taking together 1–5 allows us to understand the observed order of stabilities shown in Table I.

Stability of 5

For 5 quantum chemical calculations reveal a small positive resonance energy.

A further corroborration of our arguments can be seen by comparing the thermal stability of 5 with that of benzo[θ]thiepin (23). This latter compound as well as its 2-carbethoxy derivative decompose in less than an hour at room temperature. This can be understood by considering the resulting norcaradiene intermediate for the sulfur extrusion reaction. The orthoquinoid structure of the episulfide 24 indicates a considerably smaller activation energy of (3) compared with that of (2). Parallel to the lower activation energy of (3) is the stabilization of the ground state by resonance. Quantum chemical calculations on 23 indicate about the same resonance energy as for benzene. The thiepin derivatives 26 and 27 owe their thermal stability to electronic and steric effects. In the transition state to a thia-norcaradiene the benzene resonance is cancelled and, moreover, the benzene rings behave like bulky groups.

Experimental Section

The preparation of compounds 1a–4a has been reported. A sample of 5 and 6 has been prepared according to literature procedures. All cases analytically pure samples were investigated. The He I photoelectron spectra were recorded on a PS 18 spectrometer (Perkin Elmer, Ltd. Beaconsfield, England) and a Leybold-Heraeus UPG 200 spectrometer. The calibration was done with Ar and Xe. A resolution of 20 meV was achieved with the P4/3 Ar line. The samples had to be heated to the following temperatures: 1a, 40 °C; 2a, 50 °C; 3a, 70 °C; 4a, 25 °C; 5, 70 °C; and 6, 50 °C.

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF Aktiengesellschaft, Ludwigshafen for financial support. Some of the calculations have been carried out at the Regionales Rechenzentrum Köln utilizing a CDC CYBER 76. R.G. is indebted to JSPS for a research fellowship which started this project.

Registry No. 1a, 83670-21-7; 1b, 98705-42-1; 2a, 84477-43-0; 2b, 98705-43-2; 3a, 84477-45-2; 3b, 98705-44-3; 4a, 98705-35-2; 4b, 98705-45-4; 5, 327-25-3; 6, 9222-19-6; 7, 291-72-5; 8a, 98705-33-0; 9a, 98705-34-1; 10a, 84435-05-2; 11a, 17951-58-1; 14, 87314-35-0; 15, 98705-36-3; 16, 98705-37-4; 17, 98705-38-5; 18, 98705-39-6; 19, 98705-40-9; 20, 98705-41-0.