Helium Bonding in Singly and Doubly Charged First-Row Diatomic Cations HeX\(^{n+}\) (X = Li–Ne; \(n = 1, 2\))

Gernot Frenking,*†
Molecular Research Institute, 701 Welch Road, Palo Alto, California 94304

Wolfram Koch,†
Institut für Organische Chemie, Technische Universität Berlin, D-1000 Berlin 12, West Germany

Dieter Cremer,* Jürgen Gauss,
Institut für Organische Chemie, Universität Köln, Greinstrasse 4, D-5000 Köln 41, West Germany

and Joel F. Liebman*
Department of Chemistry, University of Maryland, Baltimore County Campus, Baltimore, Maryland 21228

With the use of ab initio calculations at the MP4(SDTQ)/6-311G(2df,2pd)//MP2/6-31G(d,p) level of theory, equilibrium geometries, dissociation energies, and vibrational frequencies are reported for singly and doubly charged HeX\(^{n+}\) cations (X = Li–Ne; \(n = 1, 2\)). The calculations were performed for the electronic ground states and selected excited states of HeX\(^{n+}\). The trends in the interatomic distances and bond strengths of the helium bonds are discussed in terms of donor–acceptor interactions between neutral He as the donor and the cationic X\(^{n+}\) fragment as the acceptor. In addition, the mechanism of bonding is analyzed by utilizing the properties of the calculated electron density \(\rho(r)\) and its associated Laplace concentration \(-\nabla^2\rho(r)\). HeX\(^{n+}\) ions in their ground states represent van der Waals complexes stabilized by charge-induced dipole interactions. In those excited states in which X\(^{n+}\) becomes a stronger acceptor, covalent bonds are predicted. In contrast to the singly charged HeX\(^{n+}\) ground-state species, all HeX\(^{n+}\) dications investigated in this work can be considered as covalently bonded molecules. Calculated properties of HeX\(^{n+}\) such as interatomic distances \(r_\text{e}\) and dissociation energies \(D_\text{e}\) are nicely explained within the donor–acceptor model. The results show that the electronic structure of X\(^{n+}\) is more important for the corresponding HeX\(^{n+}\) system than the positive charge of X\(^{n+}\).

Introduction

In recent theoretical studies\(^1\) of the structures, stabilities, and bonding of singly and doubly charged cations as well as neutral molecules containing helium, it was predicted that He may be bound very strongly in positively charged compounds such as HeCCH\(^{2+}\), HeCC\(^{2+}\), and HeCC\(^{+}\) and that even a neutral He compound, HeBeO, is stable toward dissociation. The analysis of the helium bonds in a variety of molecules showed that the strength of the He–X bond is primarily determined by its electronic structure rather than the charge or electronegativity of X. Only when X provides low-lying empty orbitals suitable for donor–acceptor interactions with the weak electron donor He is a helium bond formed. For example, the HeX bonds in HeCCH\(^{2+}\), HeNNHe\(^{2+}\), and HeOOH\(^{2+}\) become much weaker in this order, which is opposite to changes in the H–X bond strength encountered for the isoelectronic hydrogen compounds HCCH, HNNH, and HOOH.\(^2\) This may be explained by the increase in the number of occupied \(\pi\) orbitals from CC\(^+\) to NN\(^+\) and \(\text{O}_2\text{P}\). The dominant principle of helium bonding, that is, donor–acceptor interactions, is clearly different from that of hydrogen chemistry.\(^3\) Helium chemistry is also different from the chemistry of the heavier noble-gas elements. For example, for xenon strong bonds are found only when Xe combines with strongly electronegative elements such as fluoride or oxygen.\(^4\) In this paper, we present the results of our ab initio study on first-row mono- and dications HeX\(^{n+}\) (\(n = 1, 2\)) comprising a "first-row sweep" of X from Li to Ne. We calculated the ground states and, for most systems, the first excited states of HeX\(^{n+}\). The results, in particular the interatomic distances \(r_\text{e}\) and dissociation energies \(D_\text{e}\), are discussed in terms of donor–acceptor interactions.

Jan Frenking,*†
Molecular Research Institute, 701 Welch Road, Palo Alto, California 94304

Dieter Cremer,* Jürgen Gauss,
Institut für Organische Chemie, Universität Köln, Greinstrasse 4, D-5000 Köln 41, West Germany

and Joel F. Liebman*
Department of Chemistry, University of Maryland, Baltimore County Campus, Baltimore, Maryland 21228

(Received: February 1, 1988; In Final Form: August 4, 1988)

Several theoretical studies of diatomic cations HeX\(^{n+}\) containing first-row elements X have been published, although most work has been carried out at the Hartree–Fock level.\(^5\) HeLi\(^{+}\) was the subject of several theoretical studies\(^6\) with four of them\(^7\) carried out with explicit inclusion of correlation energy. One pseudopotential study for HeLi\(^{+}\) has been reported.\(^8\) HeLi\(^{+}\) is one of the very few HeX\(^{n+}\) systems investigated here for which experimental data are available. Results from scattering experiments\(^9\) indicate a potential well of 1.1–1.6 kcal/mol at equilibrium.

0022-3654/89/2093-3397$01.50/0 © 1989 American Chemical Society
geometries between 1.95 and 2.22 Å. No theoretical or experimental data have been published for doubly charged HeLi++.

In case of HeBe**, some theoretical studies have been carried out for doubly charged HeBe++ at a correlated level. Only one LCAO study has been reported for HeB++ but none have been reported for the dication HeBe++.

A number of theoretical studies are available for HeC+.10 Hartree–Fock calculations on HeC+ and HeC++ have been reported by Harrison et al.10 and by Cooper and Wilson,10b who also presented results for singly and doubly charged HeNe++ and HeO++. Correlated studies have recently been presented for HeC+4,10c HeC++,10d and a CASSCF investigation of the low-lying electronic states of HeC++ was published by two of the present authors.1c

Liebman and Allen11,12 discussed HeN+ in several electronic states based on LCAO calculations, and they compared their results for HeN+ with HeO+ and HeF+. Other theoretical data on HeN+ are available, at both the SCF9,10 and correlated level.12b The only results for doubly charged HeN++ have been reported by Cooper and Wilson.10b

The potential energy curves for all valence states of HeO+ have been calculated with a minimum basis set and full configuration interaction by Augustin et al.12 Several LCAO10b,11,12b studies as well as correlation corrected13 calculations on HeO+ have been published. In addition, two theoretical studies of doubly charged HeO++ are known to us.10b,12c

The singly charged HeF+ has been studied theoretically at the SCF level by Liebman and Allen.11 A subsequent experimental attempt by Berkowitz and Chupka12d to detect HeF+ in the gas phase failed, and an earlier report13d that claimed the observation of HeF+ was questionable.12c No theoretical data of HeF2+ are available.

Ab initio calculations14a have been performed for HeNe+, and a theoretical model14b to estimate the low-lying electronic states of HeNe+ has been introduced. Also experimental data for the spectroscopic constants of HeNe+ are available.15 The potential energy surface of doubly charged HeNe2+ has been investigated in two theoretical studies at the SCF-Cl level.16

Previous theoretical investigations do not provide sufficient knowledge about helium bonding in ground and excited states of first-row cations HeX++. In particular, few studies address the problem of a systematic comparison of HeX++ along the first-row elements. Only the papers by Liebman and Allen11 about HeN+,

HeO+, HeF+ and by Cooper and Wilson10b about HeC++, HeNe+, HeO++ compare the trends in interatomic distances and dissociation energies. In the latter paper, the authors conclude that "the various trends in stability are easily understood in terms of the effective nuclear charge on the theoretically lowest level."

However, the calculated stabilization energies of some HeX+ cations in their ground states are in the range of 2 kcal/mol. These species are bound by charge-induced dipole interactions between X+ and He. The calculated data can only be assumed to be reliable if the theoretical level predicts accurately the atomic polarizability of helium. As shown later, this is the case for the theoretical method used in our study. Nevertheless, our primary goal is an analysis of the trends in interatomic distances and bond strength rather than the spectroscopic accuracy of the calculated properties.

The major purpose of this paper is to provide an understanding of bonding in helium-containing molecules and to show how the model of donor–acceptor interactions previously used2 for the analysis of helium bonding can be employed to predict qualitatively and even semiquantitatively trends in first-row diatomic cations HeX++. For a more quantitative description of the ground and excited states of HeX+ molecules, the complete potential energy curves have to be computed with multireference methods such as CASSCF or MRD-Cl. We have recently started to carry out such studies.16 The results obtained by the CASSCF method for the equilibrium distances and dissociation energies of the X2+ ground state and the first excited state of HeX+ are in excellent agreement with the results reported here. This gives us confidence in the accuracy of our calculated data.

We also want to comment on the use of the term "donor–acceptor" interactions in the context of our investigation. Generally, the notation of a donor and acceptor fragment implies interactions between a Lewis acid–base pair.18 Donor–acceptor complexes constitute an important area of inorganic chemistry.19 The acceptor fragment is usually a neutral or cationic metal atom, and the donor fragment is often an atom or molecule with a high-lying doubly occupied orbital such as the " lone-pair" orbitals of CO, CN, CI, etc.20 These interactions are often discussed in terms of the frontier orbitals of the donor and acceptor fragments, i.e., the highest occupied molecular orbital (HOMO) of the donor, and the lowest unoccupied molecular orbital (LUMO) of the acceptor.20 In the present case, the donor fragment is the He atom and the acceptor fragment is the singly or doubly charged X++ cation. Our donor–acceptor model of HeX+ is primarily based on a frontier orbital description of the possible interactions between He and X++. Accordingly, trends in the calculated HeX

distances and dissociation energies are rationalized by investigating the properties of the LUMO of X**.

Although the frontier orbital description of cations HeX** is both simple and useful, a caveat in this connection is necessary. Investigation of the LUMO of X** does not reveal whether interactions between X** and X*** are of the type typical of a van der Waals complex or a covalently bonded molecule. In the first case, there is hardly any transfer of negative charge from He to X*** and, therefore, one may doubt the usefulness of a frontier orbital approach. The stability of a van der Waals complex is dominated by electrostatic interactions, in the case of HeX** by charge-induced dipole attractions. These in turn depend on the anisotropy of the electron density distribution of X**. If the electrons of X** are isotropically arranged, interactions will be relatively low. However, there is a hole in the electronic structure of X** in the direction of an approaching He atom, attraction will be relatively strong.

It is reasonable to assume that shape and energy of the LUMO of X** are related to the location and depth of a hole in the electronic structure. We will elaborate this point by investigating the Laplace concentration of the electrons, which is given by the negative Laplacian of the electron density distribution \(\rho(r) \), namely, \(-\nabla^2 \rho(r) \). This has been shown that the lumps in the Laplace concentration can be associated with inner shell, bonding, and lone-pair electrons. Concentration holes in the valence region of an atom (\(\nabla^2 \rho(r) > 0 \)) indicate those locations that are prone to a nucleophilic attack. They are the result of the electron configuration of an atom; i.e., they depend on the shape of the occupied MOs. Since the LUMO is orthogonal to all occupied MOs, it possesses its largest amplitude where the Laplace concentration indicates the holes in the valence electronic structure. The larger and the deeper a valence shell hole is, the stronger should be the acceptor ability of the respective atom and a possible donor-acceptor bond. Even if such a donor-acceptor bond can be established, the hole will influence charge polarization at the donor and, therefore, electrostatic interactions between a potential donor such as He and a potential acceptor such as X***. In short, the LUMO of X** is not only responsible for the extent of charge transfer between donor and acceptor but also for charge-induced dipole attractions in a van der Waals complex.

A frontier orbital analysis is satisfactory in all those cases, in which only relatively few MO interactions have to be considered as is the case in HeX**. Nevertheless, we will substantiate the conclusions drawn from the analysis of the frontier orbitals by investigation of the Laplace concentration, which comprises the effects of all occupied MOs and which immediately reveals failures of the frontier orbital approach.21 In addition, investigation of the Laplace concentration in connection with the corresponding analysis of \(\rho(r) \) provides a basis to distinguish between bonding and closed-shell interactions and to describe the nature of the HeX bond in a unique and quantitative way. This has already been demonstrated in the case of the He,C bond in helium organic cations.2 As described in more detail elsewhere,22 we expect a covalent bond (a) if there exists a path of maximum electron density (MED) between the corresponding atomic nuclei (necessary condition) and (b) if the energy density \(H(r) \) is found to be stabilizing (\(H(r) < 0 \)) at the path critical point (sufficient condition).

A MED path is always found between bonded atoms, and therefore, it can be considered as an image of the chemical bond. It can be characterized by the properties of \(\rho(r) \) at the path critical point \(r_b \), which corresponds to a saddle point of \(\rho(r) \): The electron density adopts a minimum along the path at \(r_b \) but is a maximum in all directions perpendicular to the MED path. If conditions a and b are fulfilled, we will denote \(r_b \) as a bond critical point and we will characterize the corresponding bond by the electron density \(\rho(r) = \rho_b \), the Laplace concentration \(-\nabla^2 \rho(r_b) = -\nabla^2 \rho_b \), and the energy density \(H(r_b) = H_b \).

Since it is very difficult to determine the amount of negative charge transferred from He to X** (see next section), we will describe all cations investigated within the donor-acceptor model outlined above, no matter whether a covalently bonded cation or a van der Waals complex is predicted.

A final word shall be said concerning the use of the term "stable" in the context of our investigation. We consider a HeX** species as thermodynamically stable if its energy is lower than all possible dissociation products in every electronic state, even if such a dissociation is a spin and/or spatial symmetry forbidden reaction. If a local minimum is found, but at a higher energy than the energetically lowest-lying combination of the respective products, we call this species metastable or kinetically stable. This is the case for many dications and for the excited states of the singly charged HeX* molecules. Such species might still be observable if a sufficiently high activation barrier prevents spontaneous dissociation. With one exception transition states have not been calculated because we think that a multiconfiguration method should be employed especially for the doubly charged cations. Such calculations are part of our ongoing studies of multiply charged cations.

Theoretical Methods

Standard ab initio calculations have been performed using the programs GAUSSIAN 82 and COLOGNE 87. Equilibrium geometries and vibrational frequencies have been obtained at MP2/6-31G(d,p). The latter data and the corresponding zero-point energies (ZPE) are scaled by a factor of 0.93.21 For a few higher lying states with the same spin symmetry as the ground state, numeric differentiation leads to oscillations between different electronic states. In these cases minima were verified by energy calculations with a slightly different bond length than the equilibrium distance. Single-point energy calculations for ions XHe** and their atomic fragments were carried out at the MP4(SDTQ)/6-311G(2df,2pd) level using MP2/6-31G(d,p) optimized geometries. Basis set superposition errors (BSSE) have been estimated by using the counterpoise method.

The dissociation energies \(D_e \) have been calculated in most cases as the energy differences between the HeX** cation and the respective atomic fragments in the corresponding electronic state at MP4(SDTQ)/6-311G(2df,2pd)/MP2/6-31G(d,p), corrected by ZPE and BSSE data. In a few cases where excited D states of X** were involved, we have chosen a different method. Because D states are poorly described when only one determinant is used, we calculated the dissociation energy yielding the respective ground state of X** and subtracted the experimentally determined excitation energy for X**.

The electron density distribution, \(\rho(r) \), its associated Laplace concentration, \(-\nabla^2 \rho(r) \), and the energy density, \(H(r) \), have been analyzed along the lines established earlier.21,22,23 First, the MED paths and the corresponding path critical points have been determined. Then, the energy density has been analyzed and, finally, the Laplace concentration in the valence shell and the bonding

(21) Cremer, D. In Theoretical Models of Chemical Bonding; Springer Verlag: Heidelberg, in press.
(22) This has been found useful approach when investigating van der Waals complexes of He, Ne, and Ar: Frenking, G.; Koch, W.; Gauss, J.; Cremer, D. J. Am. Chem. Soc. 1988, 110, 8007.
region has been investigated. This three-step approach has been found very useful when describing bonding in hydrocarbons, 31 Si-containing molecules, 32 three-membered rings and r-complexes, 33 dications, 34 He organic compounds, 2 van der Waals complexes, 35 and many other systems. 21

The electron density, \(\rho (r) \), has been investigated at the Hartree–Fock level throughout, although in some cases (e.g., HeNe*), Mulliken values do not comprise correlation effects. However, the numerical effort is far too scope of the present work. For the same reason, only estimates of partial charges have been obtained on the basis of a Mulliken population analysis. 36 The Mulliken values do not comprise correlation effects.

Singly Charged HeX+ Cations

Table I shows the theoretically predicted interatomic distances and energies for ground and selected excited states of monocations HeX+. The excited states discussed here have been chosen because they are well suited to demonstrate the donor–acceptor interactions in helium cations. The calculated dissociation energies \(D_0 \) and \(D_0' \), which are corrected by the values for the respective BSSE, refer to the dissociation of HeX+ into He and X+ in the corresponding electronic states as shown in Chart I. The total energies

<table>
<thead>
<tr>
<th>reactant</th>
<th>sym</th>
<th>(r_e) ((A))</th>
<th>MP2/6-31G(d,p)</th>
<th>ZPE</th>
<th>MP4/6-311G(2df,2p)</th>
<th>BSSE</th>
<th>(D_0) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li+</td>
<td>(\ast)S</td>
<td>1.184</td>
<td>-7.343</td>
<td></td>
<td>1.3</td>
<td>-7.233</td>
<td></td>
</tr>
<tr>
<td>Be*</td>
<td>(\ast)S</td>
<td>1.191</td>
<td>-14.2786</td>
<td></td>
<td>1.3</td>
<td>-14.262</td>
<td></td>
</tr>
<tr>
<td>B*</td>
<td>(\ast)S</td>
<td>1.143</td>
<td>-14.1319</td>
<td></td>
<td>1.3</td>
<td>-14.1208</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>(\ast)S</td>
<td>1.133</td>
<td>-24.2815</td>
<td></td>
<td>1.3</td>
<td>-24.2624</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>(\ast)P</td>
<td>1.130</td>
<td>-37.3344</td>
<td></td>
<td>1.3</td>
<td>-37.3264</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>(\ast)P</td>
<td>1.161</td>
<td>-37.1640</td>
<td></td>
<td>1.3</td>
<td>-37.1333</td>
<td></td>
</tr>
<tr>
<td>N-</td>
<td>(\ast)P</td>
<td>1.213</td>
<td>-53.9293</td>
<td></td>
<td>1.3</td>
<td>-53.9755</td>
<td></td>
</tr>
<tr>
<td>N+</td>
<td>(\ast)P</td>
<td>1.311</td>
<td>-74.4062</td>
<td></td>
<td>1.3</td>
<td>-74.4715</td>
<td></td>
</tr>
<tr>
<td>O*</td>
<td>(\ast)S</td>
<td>1.191</td>
<td>-89.8712</td>
<td></td>
<td>1.3</td>
<td>-89.9780</td>
<td></td>
</tr>
<tr>
<td>O+</td>
<td>(\ast)S</td>
<td>1.280</td>
<td>-127.8494</td>
<td></td>
<td>1.3</td>
<td>-128.0037</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>(\ast)S</td>
<td>1.280</td>
<td>-2.8906</td>
<td></td>
<td>1.3</td>
<td>-2.8972</td>
<td></td>
</tr>
</tbody>
</table>

* At MP2/6-31G(d,p) optimized geometries.

Calculation of Mulliken populations, which are corrected by the values for the respective BSSE, refer to the dissociation of HeX+ into He and X+ in the corresponding electronic states as shown in Chart I. The total energies

for the atomic fragments are also listed in Table I. To give an estimate for the accuracy of our computed results of excited states,
TABLE III: Theoretically Predicted Vibrational Frequencies, \(\nu \) (cm\(^{-1}\)), Partial Charges, \(q(\text{He}) \), and Overlap Populations, \(\rho(\text{He-X}) \), for Singly and Doubly Charged HeX\(^{**}\) Cations Calculated at MP2/6-31G(d,p) Optimized Geometries

<table>
<thead>
<tr>
<th>State</th>
<th>(\nu) (cm(^{-1}))</th>
<th>(q(\text{He}))</th>
<th>(\rho(\text{He-X}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HeLi}^{**})</td>
<td>198</td>
<td>0.04</td>
<td>0.036</td>
</tr>
<tr>
<td>(\text{HeBe}^{**})</td>
<td>68</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>(\text{HeBe}^{**})</td>
<td>118</td>
<td>0.28</td>
<td>0.077</td>
</tr>
<tr>
<td>(\text{HeB}^{**})</td>
<td>590</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>(\text{HeO}^{**})</td>
<td>65</td>
<td>0.10</td>
<td>0.003</td>
</tr>
<tr>
<td>(\text{HeN}^{**})</td>
<td>829</td>
<td>0.19</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Discussion

we compare in Table II experimentally determined and theoretically predicted excitation energies for atomic states of X\(^{**}\) which are important here. The agreement between theory and experiment is good. Excitation energies involving D states have not been calculated. Table III shows the calculated vibrational frequencies and results of the Mulliken population analysis\(^{35} \) for HeX\(^{**}\).

The theoretically predicted dissociation energies \(D_0 \) of the HeX\(^{**}\) ions in their electronic ground states are very low; the values are between 0.2 kcal/mol for \((X^2\Sigma^+)\) HeBe\(^{**}\) and 9.1 kcal/mol for \((X^2\Sigma^+)\) HeNe\(^{**}\). The low dissociation energies correspond to rather long equilibrium distances of the HeX\(^*\) ground states (Table I). The interatomic distances become significantly shorter in the calculated excited states of HeX\(^{**}\) (Table I). In agreement with the much shorter bond lengths there is a substantial increase in dissociation energy (with the notable exception of the \(^1\Pi\) state of HeO\(^{**}\)), vibrational frequencies, and Mulliken overlap population \(\rho(\text{He-X}) \) for the HeX\(^{**}\) excited states (Tables I and III). Thus, stronger binding is predicted for the calculated excited states than the ground states.

The trend in the interatomic distances and dissociation energies for the HeX\(^{**}\) ground states is quite interesting. Figure 1 illustrates the sequence of the equilibrium distances in comparison with the experimentally known\(^{35} \) bond lengths for isoelectronic XH molecules. Since NeH does not form a stable molecule in its ground state, HeNe\(^{**}\) has not been included in Figure 1. Then, the shortest (and strongest) bond is predicted for NeHe\(^{+}\), and HeLi\(^{**}\) has even a slightly shorter (and stronger) bond than HeH\(^{**}\).

This is quite different from the isoelectronic hydrides XH from X = Li to Ne. In general, the trends in the interatomic distances and dissociation energies for the HeX\(^{**}\) isoelectronic hydrides (X = Li to Ne) are very close. For ground and excited states of HeX\(^{**}\), the very low \(D_0 \) and \(D_e \) values for the ground states suggest that the attractions are caused by charge-induced dipole interactions. The energy \(E_{\text{ind}} \) of these interactions may be estimated by

\[
E_{\text{ind}} = -0.5\alpha q^2 / r^6
\]

Here, \(q \) is the atomic charge of atom X, \(r \) is the interatomic distance, and \(\alpha \) is the atomic polarizability of He. Using the recommended\(^{37} \) value of \(\alpha(\text{He}) = 1.385 \) a\(^0\) and the theoretically predicted equilibrium distances, we have obtained the energies \(E_{\text{ind}} \) shown in Chart I. For the ground states, \(D_0 \) and \(E_{\text{ind}} \) values are very close. In order to see whether this agreement is fortuitous, we have calculated the atomic polarizability of helium, \(\alpha(\text{He}) \). At the MP4(SDQ)/6-31G(2df,2pd) level the calculated \(\alpha(\text{He}) \) deviates only 10% from the recommended value,\(^{37} \) provided the complete basis of HeX\(^{**}\) is employed.\(^{38} \) We interpret this together with the agreement between \(D_0 \) and \(E_{\text{ind}} \) values as strong indication that binding is caused predominantly by electrostatic interactions between the positive charge at X\(^+\) and the induced dipole at the He atom. Larger differences between \(D_0 \) and \(E_{\text{ind}} \) values are found for the excited states (Chart I). However, eq 1 is only valid for large interatomic distances and may not be appropriate when the distances are as short as calculated for the higher lying states. Therefore, we can not make a statement whether the excited states are chemically bound species, although the rather large dissociation energies and Mulliken overlap populations indicate covalent bonding for \(^2\Pi\) HeNe\(^{**}\) and \(^2\Sigma^+\) HeF\(^{**}\) (Chart I, Table III).

The trend in HeX bonds for the HeX\(^{**}\) ground states and the dramatic changes between HeX\(^{**}\) ground and excited states find a consistent explanation when the interaction between neutral He and X\(^+\) in its respective electronic state is analyzed by using the model of donor-acceptor interactions with He as donor and X\(^+\) as acceptor. The donor-acceptor interactions may be considered as being dominated by the interactions between the highest occupied orbital of He (1s HOMO) and the lowest unoccupied orbital (LUMO) or singly occupied orbital (SOMO) of X\(^+\). It will be seen that the predictions based on this model are valid for weakly bound systems such as the HeX\(^{**}\) ground states as well as for stronger bound HeX\(^{**}\) excited states, and also for HeX\(^{**}\) dications.

The valence orbitals of the first-row elements consist of the 2s AO and the triply degenerate \(^2\Pi\) AO. Upon approach of a helium atom, this degeneracy is split into a \(p(\sigma) \) AO, and a pair of degenerate \(p(\pi) \) AOs. This is schematically shown in Figure 2 for all electronic states of X\(^+\) and X\(^{**}\) which are important for the discussion here. The orbital scheme of Figure 2 will provide a basis for the discussion of the interactions between He and X\(^{**}\). Since the ionization energies (IE) of atoms X are frequently used in the text, we show the experimentally observed first and second ionization energies in Table IV. We will consider in the following...
distance, larger differences are found for the He,Li interatomic distance. The previously reported values\(^6\) for only one term for the delta states is shown. Since the potential energy curve is very flat near the equilibrium and interactions with He yield a rather weak bond in (XlZ')

Energies, IE (in eV), for He and First-Row Elements X

<table>
<thead>
<tr>
<th>Table IV</th>
<th>Experimentally Observed(^39) First and Second Ionization Energies, IE (in eV), for He and First-Row Elements X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{atom})</td>
<td>(\text{IE}_1)</td>
</tr>
<tr>
<td>He</td>
<td>24.587</td>
</tr>
<tr>
<td>Li</td>
<td>5.392</td>
</tr>
<tr>
<td>Be</td>
<td>9.322</td>
</tr>
<tr>
<td>B</td>
<td>8.298</td>
</tr>
<tr>
<td>C</td>
<td>11.260</td>
</tr>
</tbody>
</table>

monocations He\(^+\), starting with HeLi\(^+\).

\(\text{HeLi}^+\). Li\(^+(2s)\) has an empty valence shell (Figure 2). The 2s LUMO is energetically not very low lying (IE of Li, 5.392 eV\(^39\)), and interactions with He yield a rather weak bond in \((\chi^2\Sigma^+)\) HeLi\(^+\) with a dissociation energy \(D_e\) of only 1.5 kcal/mol (Chart I). \((\chi^2\Sigma^+)\) HeLi\(^+\) is well described at the Hartree-Fock level, and HOMO-LUMO interactions with He involve the 2p(a) \(\text{AOs}\) of \((\chi^2\Sigma^+)\) C\(^+\) and \((\chi^2\Sigma^+)\) N\(^+\), respectively (Figure 1). Since the energy level of the 2p(\(\sigma\)) AO becomes lower in the sequence \(B > C > N\), the HOMO-LUMO interactions with He increase in the same order.

\(\text{HeC}^+\) and \(\text{HeN}^+\). Frontier orbital interactions between He and the ground states of \(\text{B}^+, \text{C}^+, \text{and N}^+\) all involve the 2p(\(\sigma\)) HOMO-LUMO interactions with He in the ground state of \(\text{HeC}^+\), \(\text{HeC}^+, \text{HeN}^+, \text{which become more stable with He}^+ < \text{HeC}^+ < \text{HeN}^+\). The same sequence is found for the excited states of the three cations (Table I, Chart I). Figure 2 shows that, for the excited states, HOMO-SOMO interactions involving the 2s AO of \(\chi^+\) are possible for the \(3\Pi\), \(4\Pi\), and \(3\Delta\) state of \(\text{B}^+, \text{C}^+, \text{and N}^+, \text{respectively.}\)

Since the 2s orbital becomes lower in energy in the same order as the 2p(\(\sigma\)) AO, a parallel shortening of the interatomic distances for ground and excited states is found for \(\text{HeC}^+, \text{HeC}^+, \text{and HeN}^+\) (Table I). The dissociation energy of the \(3\Pi\) state of \(\text{HeN}^+\) \((D_e = 68.9\) kcal/mol\) is the largest value of all He\(^+\) ions discussed here (Chart I). Also, \((\Pi\Pi)\) He\(^{++}\) possesses the shortest bond length (1.007 Å) of all He\(^+\) species shown in Table I.

Previous ab initio studies of \(\text{HeC}^+\) in its \(2\Pi\) ground state predict at the Hartree–Fock level dissociation energies \(D_e\) of 20.55 kcal/mol at \(r_e = 2.59\) Å\(^\text{40}\) and \(D_e\) ca. 0.57 kcal/mol at \(r_e = 2.72\) Å\(^\text{41}\). Our result for \(D_e\) is slightly larger (1.1 kcal/mol) (Chart I). Due to the rather shallow potential energy curve, differences in \(r_e\) values are larger. Experimentally, a molecular ion He\(^{+}\) has been observed\(^42\) in discharge studies involving graphite and He. However, no spectroscopic data are available.

For the \(\chi^2\Sigma^+\) ground state of \(\text{HeN}^+\), two LCAO studies predict stabilization energies \(D_e\) of 0.17 kcal/mol at \(r_e = 1.693\) Å\(^\text{40}\) and \(D_e\) ca. 1.5 kcal/mol at \(r_e = 2.12\) Å\(^\text{41}\). Again, our \(D_e\) value of 4.1 kcal/mol obtained at a correlated level is higher (Chart I). While the \(3\Pi\) excited state of \(\text{HeN}^+\) has not been studied previously, another excited state of \(\text{HeN}^+\), the \(\chi^2\Sigma^+(4\Xi)\), was calculated by Liebman and Allen.\(^41\) They obtained \(r_e = 1.06\) Å and \(D_e = 127\) (kcal/mol), which can be easily rationalized using the donor–acceptor model used here. The electronic state of \(N^+\) corresponding to \(\chi^2\Sigma^+(4\Xi)\) \(\text{HeN}^+\) is the highly excited \(\chi^2\Pi(4\Xi)\) state with two doubly occupied \(\pi\) orbitals. This state has a low-lying 2s LUMO (compare Figure 2) leading to strong HOMO–LUMO interactions with He.

\(\text{HeO}^+\). The main difference between \(\text{HeN}^+\) and \(\text{HeO}^+\) is that the additional electron in the corresponding \(\chi^2\Sigma^+\) ground state of

\(\text{(41) \text{Figure 2 shows only one component of the D state in terms of real orbitals, which is sufficient for the discussion presented here. For a more complete presentation of atomic D and molecular D states, see: Salem, L. \text{Electrons in Chemical Reactions; Wiley: New York, 1982.}}\)

\(\text{(42) Young, S. E.; Coggio, M. J. Int. J. Mass. Spectrom. Ion Processes 1986, 97, 137.}}\)
O* occupies the 2p(e) AO (Figure 2). Frontier orbital interactions involve the SOMO of (1s) O*, and therefore, they are weaker than in (X*S+) HeN+. This is clearly reflected by the He-O distance (2.473 Å) as the ground states of B+, C+, and N+ (Figure 2). Because of the lower energy level of the 2p(e) AO in O*, the interatomic distance in (2Π) HeO* is shorter than in (3Σ+) HeN+. On the other hand, the computed dissociation energy Do for the 2Π excited state (4.4 kcal/mol), although larger than for the X*S+ ground state, is surprisingly small in view of the short interatomic distance of 1.191 Å. A previous SCF-CI study of the potential curves of HeO* by Augustin et al.12 gave a stabilization energy of ca. 6 kcal/mol for (2Π)HeO*. This is in good agreement with our result of 1.191 Å. The only previous theoretical study on the X*S+ ground state of HeO* predicts a purely repulsive potential energy curve at the SCF-CI level using a minimum basis set. The stronger bound 2Π excited state of HeO* has been the subject of several LCAO studies which predict interatomic distances of 1.323 Å,10 1.5 Å,11b and 1.74 Å.12 Augustin et al.12 reported the SCF-CI potential curve of the 2Π state without giving the energy minimum distance. From the plotted curve and the listed energy values, a value for r0 of ca. 1.25 Å can be deduced which is in reasonable agreement with our result of 1.191 Å. The large deviations of the SCF values10,11b,12 can be explained by the very flat potential energy curve of the 3Π state.12b HeF* and HeF+. The orbital diagrams for the electronic states of F* and Ne* shown in Figure 2 suggest HOMO-SOMO interactions involving the singly occupied 2p(e) AO of (3P) F* and (2Π) Ne* in the XΠ and XΣ* ground states of HeF+ and HeNe+, respectively. Since the energy of the SOMO increases from (1s) O* to (1P) F*, frontier orbital interactions should increase. This is in agreement with the calculated decrease in r0 and increase in dissociation energy for the corresponding HeX+ ions (Table I, Chart I). In the case of HeF+, the 1P valence excited state of F* (Figure 2) entails the same type of HOMO-LUMO interaction as the 1Σ* excited state of HeF* as in (1Π) HeO*. Compared to (2Π) HeO*, r0 is shorter and D0 much higher (47.5 kcal/mol, Chart I) in (2Σ) HeF+. Again, this can be considered as a result of the low-lying LUMO. The 1Σ* excited state of HeF+ has been calculated before at the Hartree-Fock level11,43. The bond length was predicted as 1.33 Å and the dissociation energy D0 as 33 kcal/mol. Our results predict a much shorter and stronger bond for 1Σ* HeF+ (r0 = 1.024 Å, D0 = 47.5 kcal/mol; Table I, Chart I). Experimental attempts to observe HeF+ in the gas phase analogous to the successful formation of XeF+, KrF+, and ArF+ failed14 for reasons we will discuss below. The rather large dissociation energy predicted for the 1Σ* excited state of HeF+ should be sufficient to observe metastable HeF+ in a suitable experiment.

For HeNe* the results of a spectroscopic study15 are available which give a dissociation energy D0 of 15.9 kcal/mol at an energy density p0 at r0 is given in Å with respect to the position of the nucleus of He. Electron density p0, at r0 is given in e Å-3, Laplacian ρ^2 at p0 in e Å-5, energy density H0 in hartrees Å-3, and D0 (without ZPE) in kcal mol-1. a At the HF/6-31G(d,p) level, ρ(r) and therefore, they are weaker in the (X^S+) HeN+. This is clearly reflected by the He-O distance (2.473 Å). b The position r0 is given in Å with respect to the position of the nucleus of He. c The position r0 is given in Å with respect to the position of the nucleus of He. d For HeX*, IA values are given.

Table V: Nature of the He,X Interactions As Described by the Properties of the Electron Density Distribution Calculated at the HF/6-31G(d,p) Level

<table>
<thead>
<tr>
<th>HeX+ (state)</th>
<th>r0</th>
<th>p0</th>
<th>v^2p0</th>
<th>H0</th>
<th>D0 (IA)^d</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLi+(X^1Σ+)</td>
<td>1.159</td>
<td>0.04</td>
<td></td>
<td>1.06</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>HeBe+(X^2Σ+)</td>
<td>1.396</td>
<td>0.01</td>
<td></td>
<td>0.17</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>HeB+(X^2Σ+)</td>
<td>1.287</td>
<td>0.02</td>
<td></td>
<td>0.33</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>HeO+(X^2Σ+)</td>
<td>0.903</td>
<td>0.34</td>
<td></td>
<td>8.95</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>HeC+(X^2Π)</td>
<td>1.109</td>
<td>0.05</td>
<td></td>
<td>0.93</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>HeN+(X^2Σ+)</td>
<td>0.737</td>
<td>0.98</td>
<td></td>
<td>39.12</td>
<td>-0.76</td>
<td></td>
</tr>
<tr>
<td>HeN+(X^2Σ+)</td>
<td>0.829</td>
<td>0.26</td>
<td></td>
<td>5.60</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>HeN+(X^2Π)</td>
<td>0.630</td>
<td>2.06</td>
<td></td>
<td>73.36</td>
<td>-3.51</td>
<td></td>
</tr>
<tr>
<td>HeO+(X^2Σ+)</td>
<td>1.146</td>
<td>0.04</td>
<td></td>
<td>0.75</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>HeO+(X^2Π)</td>
<td>0.576</td>
<td>1.51</td>
<td></td>
<td>10.79</td>
<td>-1.21</td>
<td></td>
</tr>
<tr>
<td>HeF+(X^2Π)</td>
<td>0.998</td>
<td>0.09</td>
<td></td>
<td>1.98</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>HeF+(X^2Σ+)</td>
<td>0.470</td>
<td>2.63</td>
<td></td>
<td>12.82</td>
<td>-2.72</td>
<td></td>
</tr>
<tr>
<td>HeNe+(X^2Π)</td>
<td>0.625</td>
<td>0.80</td>
<td></td>
<td>18.08</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>HeB+</td>
<td>0.835</td>
<td>0.57</td>
<td></td>
<td>8.80</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>HeB+(Π)</td>
<td>0.727</td>
<td>0.82</td>
<td></td>
<td>29.68</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>HeC+</td>
<td>0.757</td>
<td>0.55</td>
<td></td>
<td>3.25</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>HeC+(Π)</td>
<td>0.738</td>
<td>1.24</td>
<td></td>
<td>19.23</td>
<td>-1.39</td>
<td></td>
</tr>
<tr>
<td>HeN+</td>
<td>0.642</td>
<td>1.19</td>
<td></td>
<td>0.08</td>
<td>-0.80</td>
<td></td>
</tr>
<tr>
<td>HeN+(Π)</td>
<td>0.648</td>
<td>2.16</td>
<td></td>
<td>9.19</td>
<td>-4.06</td>
<td></td>
</tr>
<tr>
<td>HeO+(X^2Σ+)</td>
<td>0.537</td>
<td>1.96</td>
<td></td>
<td>-5.11</td>
<td>-1.86</td>
<td></td>
</tr>
<tr>
<td>HeO+(Π)</td>
<td>0.468</td>
<td>2.88</td>
<td></td>
<td>-15.18</td>
<td>-3.59</td>
<td></td>
</tr>
<tr>
<td>HeF+(Π)</td>
<td>0.450</td>
<td>2.82</td>
<td></td>
<td>-9.16</td>
<td>-2.93</td>
<td></td>
</tr>
<tr>
<td>HeNe+(X^2Π)</td>
<td>0.415</td>
<td>2.92</td>
<td></td>
<td>-5.87</td>
<td>-2.58</td>
<td></td>
</tr>
</tbody>
</table>

41 In ref 11a and 13a, the ground state of HeF* was assumed to have 3Σ*(2e) symmetry. The 2Π state was not considered. Both electronic states are related to the 3P state of F* (Figure 2). The difference is that, in the 3Σ*(2e) state, the 2p(e) AO of F* is doubly occupied, and the two p(e) orbitals are occupied each by an electron. At large He-F distances, the two states become degenerate. At shorter distances, the 2Π state encounters weak donor-acceptor attraction involving the singly occupied 2p(e) AO as discussed in the text. Since this orbital is doubly occupied in the 3Σ*(2e) state, there are no attractive orbital interactions involving the valence orbitals of F*, and the potential energy curve of this state will be slightly higher in energy than the 2Π state. Consequently, the 2Π state of HeF* should be considered the ground state.
equilibrium distance of 1.30 Å for the $X^2\Sigma^+$ ground state. This indicates somewhat stronger He,Ne interactions as calculated here ($D_0 = 9.1$ kcal/mol; Table I). A model calculation\(^{18}\) gave results that are similar to the experimental results; i.e., $D_0 = 16.1$ kcal/mol at $r_c = 1.375$ Å. Several ab initio studies\(^{14e,15,22}\) predict dissociation energies between 0 kcal/mol\(^{18d}\) and 30 kcal/mol.\(^{14e}\) In those studies where minima have been located, interatomic distances are predicted between 1.455 Å\(^{14e}\) and 1.49 Å.\(^{14e}\)

Analysis of the Electron Density Distribution and the Bonding Mechanism

Table V summarizes the results of the electron density analysis. For all cations investigated a MED path and a path critical point r_c have been found. However, for the electronic ground states of HeX$^+$ monocations the electron density ρ_e at the path critical point is extremely small ranging from 0.01 ($X = Be$) to 0.26 e Å\(^{-3}\) ($X = N$). Only $X^2\Sigma^+$ HeNe$^+$ possesses a somewhat larger value of $\rho_e = 0.90$ e Å\(^{-3}\) (Table 5). Since ρ_e of covalent bonds is typically 1.5–3 e Å\(^{-3}\), the calculated ρ_e values suggest that the HeX$^+$ cations in the ground state are bound by electrostatic forces, with perhaps some covalent contributions in case of HeNe$^+$.

As noted above, both electrostatic and covalent interactions depend on the position and the size of electron holes in the valence shell of X$^+$. The latter are nicely reflected by the Laplace concentration $-\nabla^2 \rho(r)$. Figure 3 gives perspective drawings and contour line diagrams of $-\nabla^2 \rho(r)$ of the $X^2\Sigma^+$ and $^3\Pi$ states of HeN$^+$ shown in the xz plane and the yz plane, where the z direction corresponds to the internuclear axis. There is a torus of negative charge concentration in the valence shell of N$^+$ in ($X^2\Sigma^+$) HeN$^+$ perpendicular to the internuclear axis. This torus can be associated with the electrons in the $2p_x$ and $2p_y$ orbitals of ($^3\Pi$) N$^+$. Only the part of the torus in the xz plane is shown in Figure 3a,b. In the direction of the oncoming He atom, i.e., in the x axis, there is a concentration hole in the valence shell of ($^3\Pi$) N$^+$, which can be associated with the (p_x) LUMO. It is this valence shell hole that imparts electron acceptor ability to ($^3\Pi$) N$^+$. However, the acceptor ability of ($^3\Pi$) N$^+$ is not sufficient to pull electrons of He into the valence shell of the ion to establish a semipolar bond. Inspection of Figure 3a,b reveals that the Laplace concentration of the He atom in ($X^2\Sigma^+$) HeN$^+$ is only slightly distorted from the isotropical distribution of an isolated He atom. There is more depletion of negative charge (solid contour lines) at the back and less in front opposite to N$^+$. Hence, the Laplace concentration is typical of electrostatic attraction between the two atoms.

The situation is different for the excited ($^3\Pi$) state (Figure 3c,d, xz plane; Figure 3e,f, yz plane). The torus of charge concentration at N$^+$ is enlarged in the x direction because the p_x orbital of ($^3\Delta$) N$^+$ is now occupied by two electrons, one stemming from the $2s$ orbital. The $2s$ orbital is singly occupied and, as a consequence, the N nucleus is less shielded, in particular in the direction of the $2p_x$ orbital. This is clearly reflected by the deep valence shell concentration hole in the z direction (compare Figure 3a with 3c and 3e). The acceptor ability of N$^+$ is enlarged in the $^3\Delta$ state and electrons are pulled from He toward the concentration hole. Accordingly, the Laplace concentration of He is strongly distorted in ($^3\Pi$) HeN$^+$. There is a dropletlike appendix in the He,N bonding region of ($^3\Pi$) HeN$^+$ (Figure 3d and 3f, respectively). Such a feature was found by us typical of a semipolar He,X bond in the case of helium compounds.\(^2\) At the bond critical point of the He,N bond, ρ_e is 2.06 e Å\(^{-3}\) and H_e is significantly smaller than zero. Hence, there is a strong semipolar covalent He,N bond in ($^3\Pi$) HeN$^+$.

All excited HeX$^+$ states investigated in this work possess a covalent He,X bond or at least a bond with partial covalent character. The ρ_e and H_e data in Table V show that the He,B bond is the weakest, actually more electrostatic than covalent. The strongest covalent bond is found for ($^3\Pi$) HeN$^+$, which is in line with both the frontier orbital and the Laplace description of HeX$^+$ interactions (Figures 2 and 3e–f).

While first-row HeX$^+$ cations in their ground state are van der Waals complexes, weakly stabilized by charge–induced dipole...
attraction, the corresponding HeX2+ dications are all covalently bound in the ground and excited states. This is suggested by the r\textsubscript{s0} and H\textsubscript{e} values listed in Table V. Ionization of a second electron of X leads to an enlargement of valence shell holes and, thus, stronger attraction of the s electrons of He. Figure 4, which gives the Laplace concentration of (X2+) HeN2+ in the xz plane (Figure 4a,b) and in the yz plane (Figure 4c,d), reveals that the 1s electron concentration of He is pulled toward N2+ tending to a Laplace pattern typical of a semipolar covalent. There are two concentration lumps where the p\textsubscript{z} electron of (P) N2+ should be expected and a concentration hole in the y direction corresponding to an empty p\textsubscript{x} orbital. If negative charge is transferred from He to the 2p(x) LUMO, electron concentration is also found in the z direction (Figure 4a–d).

Covalent bonding is also found for the excited states of HeX2+ investigated in this work. Figure 4e clearly shows that the valence shell hole is deeper when a 2s electron is excited in a 2p(\pi) AO of (P) N2+. As a consequence, donor–acceptor interactions are larger than in the ground state and a stronger semipolar He–N bond results (note that a direct comparison of the Laplace concentrations of N+ and N2+ is only possible if the smaller valence shell radius of the latter ion is considered). This observation applies to all excited states investigated (Table V). We will now discuss the HeX2+ ions in more detail.

Doubly Charged HeX2+ Cations

As indicated above, donor–acceptor interactions between He and X2+ should be much stronger than between He and X+ since (i) the orbital vacancy is higher for X2+ than for X+ and, therefore, X2+ can be expected to be a stronger electron acceptor than X+; (ii) the energy of the LUMO is lower in X2+ than in X+, which also increases the acceptor ability of X.

However, there is a distinct difference between the dissociation of doubly charged cations HeX2+ and monocations HeX+. While the latter species dissociate always to He and X+, the energetically lowest lying fragmentation of dications HeX2+ may either be He + X2+ or He+ + X+. Provided that the reaction is spin- and space-symmetry allowed, the charge-separation reaction into He+ and X2+ will be preferred for those dications HeX2+ whose atom X has a second IE which is higher than the first IE of He (24.587 eV).39 For the systems investigated here, that is the case for X = Li, B, N, O, F, and Ne. Only for HeBe2+ and HeC2+ the preferred dissociation reaction involves He and X2+ because the second IE of Be and C is lower than the first IE of He (Table IV). Then, what is the justification to discuss dications HeX2+ in terms of interactions between He and X2+ in cases where the actual dissociation products are He+ and X2+?

The basis of the argumentation presented here is found in Pauling's discussion of the bonding in He\textsubscript{2}+ back in 1933.44 Generalized for systems XY2+, where X and Y may be atoms or molecules, the principles of bonding between X and Y in XY2+ are as following: The positively charged fragments X2+ and Y+ repel each other due to Coulomb interactions, and the potential curve may be approximated by a purely repulsive 1/r curve. Electron excitation from X2+ to Y+ and vice versa yields the systems X + Y2+ and X2+ + Y, respectively. To simplify the discussion we will consider only one of these two terms, that is X2+ + Y. The interactions between atoms or molecules X2+ and Y will be attractive, either due to charge–induced dipole interactions at larger distances or because of actual electron donation from Y toward X2+ at a shorter range. Thus, the potential curve between X2+ and Y will exhibit a minimum. Then, four qualitatively different possibilities may be envisaged depending on the ionization energies of X and Y. These four cases are schematically shown in Figure 5.

Figure 5a depicts the situation where the dissociation products X2+ + Y are lower in energy than X2+ + Y+. The ground-state potential energy curve of XY2+ is completely determined by the interactions between X2+ and Y. In Figure 5b, X2+ + Y+ are lower than Y+ + X2+ and thus the system XY2+ is more stable than the X + Y2+ system. The interaction between X2+ and Y+ is repulsive in all cases of interest. The two potential curves of X2+ + Y and X + Y2+ cross each other at a certain distance that is strongly dependent on the ionization energies and the orbital energetics of the components X and Y. The same reasoning is true for the corresponding cations X2+ and Y2+ which are only stable in a limited range of the interaction energy.
The data in Table VI show that the interatomic distances of HeX\(_2^+\) dications which are bound in their ground state are much shorter than those of the respective singly charged systems and that the IA values of HeX\(_2^+\) are much higher than the \(D_0\) values of the corresponding HeX\(_+\) ions. Three dications are predicted to be thermodynamically stable in their ground states, i.e., HeBe\(_2^+\), HeB\(_2^+\), and HeC\(_2^+\). As for the monocations, the excited states of HeX\(_2^+\) have shorter bond lengths than the ground states. Only for one excited state, the HeB\(_2^+\) II state, the symmetry-allowed dissociation reaction is predicted to be endothermic. All other excited states calculated here exhibit very short interatomic distances HeX\(_+\) and, therefore, may have a sufficiently high activation energy for dissociation to be observable in the gas phase. For example, a deep potential well of 15.9 kcal/mol has theoretically been predicted\(^{15}\) for the \(^3\)II state of HeC\(_2^+\) based on a CASSCF study of the potential energy curve.

We calculated charge-induced dipole interactions \(E_{\text{int}}\) for ground and excited states of HeX\(_2^+\) using eq 1. The results are shown in Chart II. Although eq 1 is not valid at short interatomic distances, because it considers only attractive forces and not repulsive interactions, a comparison with the quantum mechanically calculated results is interesting. The \(E_{\text{int}}\) data show nearly the same order as the calculated IA values (Chart II), and even the absolute values for IA and \(E_{\text{int}}\) are rather close in most cases. We will now discuss our results for HeX\(_2^+\) dications for each molecule separately in the same fashion as the singly charged cations HeX\(_^+\).

\[\text{HeLi}^+: \text{The ground-state } ^2\Sigma^+ \text{ potential energy curve of HeLi}^+ \text{ is calculated as purely repulsive. Using the bonding model outlined above, attractive interactions are expected for He + Li}^2.\]

\[\text{The second ionization energy of Li is very high } (75.638 \text{ eV}), \text{ because}\]

\[\text{the classical tetracoordinated } \text{H}_2\text{C–X structures as in case of the neutral molecules.}\]

The second example concerns the transition structures for dissociation of dications XY\(_2^+\) into X\(^+\) + Y\(^+\) (Figure 5b,c). For some reactions, these transition structures have unusually long X,Y interatomic distances. Figure 5c indicates that the location of the transition state depends on the energy difference of the two dissociation products, i.e., X\(^+\) + Y\(^+\) and X\(^2+\) + Y. It was possible to predict rather accurately the transition states for some dissociation reaction of XY\(_2^+\) based on the ionization energies of X and Y.\(^\text{47}\)

\[\text{From the above we conclude that it is reasonable to discuss systems XY\(_2^+\) in terms of interactions between X\(^+\) and Y even when the preferred dissociation path of XY\(_2^+\) is the charge-separation reaction into X\(^+\) + Y. Thus, our discussion of HeX\(_2^+\) will be analogous to HeX\(_^+\).}\]

Table VI shows the calculated interatomic distances, total energies, and ZPE and BSSE values for the ground and some excited states of dications HeX\(_2^+\). The energies for those atomic fragments that are not already listed in Table I are also given. In addition, the theoretically predicted dissociation energies \(D_0\) are listed which refer to the energetically most favorable symmetry-allowed atomization reactions given in Chart II. The calculated interaction energies IA for the dissociation into He(X)\(^+\) and X\(^2+\) in the respective electronic state are also shown in Table VI. The corresponding dissociation reactions are included in Chart II. In case of the singly charged HeX\(_^+\) cations, \(D_0\) and IA values are the same. For the dications it is only when the most favorable reaction path for dissociation of HeX\(_2^+\) yields He + X\(_2^+\) that \(D_0\) and IA values are identical. In other cases, the IA values may be taken as a measure for stabilizing donor–acceptor interactions in HeX\(_2^+\). From the discussion presented above a correlation may be expected between the IA values and the interatomic distances He–X.

\[\text{The data in Table VI show that the interatomic distances of HeX\(_2^+\) dications which are bound in their ground state are much shorter than those of the respective singly charged systems and that the IA values of HeX\(_2^+\) are much higher than the } D_0 \text{ values of the corresponding HeX}^+ \text{ ions. Three dications are predicted to be thermodynamically stable in their ground states, i.e., HeBe}^+\), HeB\(_2^+\), and HeC\(_2^+\). As for the monocations, the excited states of HeX\(_2^+\) have shorter bond lengths than the ground states. Only for one excited state, the HeB\(_2^+\) II state, the symmetry-allowed dissociation reaction is predicted to be endothermic. All other excited states calculated here exhibit very short interatomic distances HeX\(_+\) and, therefore, may have a sufficiently high activation energy for dissociation to be observable in the gas phase. For example, a deep potential well of 15.9 kcal/mol has theoretically been predicted\(^{15}\) for the \(^3\)II state of HeC\(_2^+\) based on a CASSCF study of the potential energy curve.\]

\[\text{We calculated charge-induced dipole interactions } E_{\text{int}} \text{ for ground and excited states of HeX}^+ \text{ using eq 1. The results are shown in Chart II. Although eq 1 is not valid at short interatomic distances, because it considers only attractive forces and not repulsive interactions, a comparison with the quantum mechanically calculated results is interesting. The } E_{\text{int}} \text{ data show nearly the same order as the calculated IA values (Chart II), and even the absolute values for IA and } E_{\text{int}} \text{ are rather close in most cases. We will now discuss our results for HeX}^+ \text{ dications for each molecule separately in the same fashion as the singly charged cations HeX}^+.\]

a 1s core electron is ionized. In fact, the second IE of Li is even higher than the second IE of He (Table IV). Therefore, the dissociation limit He\(^{2+}\) + Li is lower in energy than He + Li\(^{2+}\).

On the other hand, the potential energy curves of the dissociation reactions yielding He\(^{2+}\) + Li or He + Li\(^{2+}\) are much higher in energy than those electronic states leading to H\(^{+}\) + Li\(^{+}\), and because of the large energy difference, the states do not interact significantly. Thus, HeLi\(^{2+}\) is an example for the case shown in Figure 5d.

HeBe\(^{2+}\): The second IE of Be is lower than the first IE of He (Table IV), and dissociation of (X\(^2\Sigma\^+)\) HeBe\(^{2+}\) yields He and (S) Be\(^{2+}\). (S) Be\(^{2+}\) is isoelectronic with (S) Li\(^{2+}\), and frontier orbital interactions with He involve in both cases the 2s LUMO (Figure 2). Since the 2s (Be\(^{2+}\)) AO is lower in energy than the 2s (Li\(^{2+}\)) AO, the He-Be distance is shorter (1.453 Å) and the dissociation energy is larger (D\(_o\) = 20.1 kcal/mol) than the corresponding values for (X\(^2\Sigma\^+)\) HeLi\(^{2+}\) (2.062 Å, 1.5 kcal/mol; Table I, Chart I). The calculated D\(_o\) value (18.9 kcal/mol) is very similar to previously reported values obtained at a lower level of theory (17.7, 18.2, and 18.6 kcal/mol). HeBe\(^{2+}\) is an example for the situation shown in Figure 5a.

HeB\(^{2+}\): HeB\(^{2+}\) is isoelectronic with HeBe\(^{2+}\). In both cases, there are HOMO-SOMO interactions of the singly occupied 2s AO of the respective atomic ion X with He in the X\(^2\Sigma\^+\) ground states of the diatomics (Figure 2). Because the 2s AO of B\(^{2+}\) is energetically lower than the 2s orbital of Be\(^{2+}\), HOMO-SOMO interactions are stronger in (X\(^2\Sigma\^+)\) HeB\(^{2+}\). Since HOMO-SOMO interactions become more attractive at shorter interatomic distances,\(^{40}\) the bond length of HeB\(^{2+}\)(X\(^2\Sigma\^+\)) is not only shorter than that in HeBe\(^{2+}\)(X\(^2\Sigma\^+\)), it is also shorter than the bond length in (X\(^1\Sigma\^+)\) HeBe\(^{2+}\). This is in line with the calculated interaction energy IA for the ground state of HeB\(^{2+}\) (25.8 kcal/mol), which is larger than that for the ground state of HeBe\(^{2+}\) (20.1 kcal/mol). However, the ground state of HeB\(^{2+}\) does not dissociate into He + B\(^{2+}\), because the second IE of B (25.154 eV) is slightly larger than the first IE of He. Nevertheless, the interaction energy IA between He and B\(^{2+}\) is sufficient to compensate for the energy differences of the dissociation limits. HeB\(^{2+}\) in its X\(^2\Sigma\^+\) ground state is theoretically predicted to be thermodynamically stable toward dissociation by D\(_o\) = 15.2 kcal/mol. The difference between the IA and D\(_o\) values for HeB\(^{2+}\)(X\(^2\Sigma\^+\)) (10.2 kcal/mol; Chart II) corresponds to the difference between first IE of He and second IE of B (experiment, 13.1 kcal/mol\(^{39}\)). HeB\(^{2+}\)(2\(^2\Sigma\^+)\) is an example for the case shown in Figure 5b.

The II excited state of HeB\(^{2+}\) correlates with the 2\(^2\)P excited state of B\(^{2+}\) (Figure 2). HOMO-LUMO interactions of the empty 2\(^2\)P of B\(^{2+}\) with He yield a cleary shorter interatomic distance (1.191 Å) than that in the X\(^2\Sigma\^+\) ground state, analogous to what has been calculated for isoelectronic HeBe\(^{2+}\)(II) (Table I). Parallel to the shortening of the HeB\(^{2+}\) distance, the calculated interaction energy, IA, of HeB\(^{2+}\)(II) (64.5 kcal/mol) is significantly larger than that for the X\(^2\Sigma\^+\) ground state (26.8 kcal/mol). The lowest lying symmetry-allowed dissociation reaction of the II excited state yields He + B\(^{2+}\)(II) (Chart II). The very similar D\(_o\) values for ground and excited states of HeB\(^{2+}\) (16.6 and 18.6 kcal/mol; Chart II) are further indication that interactions are dominated by electron donation from the 1s electrons of He. The D\(_o\) values suggest that the excitation energy of B\(^{2+}\)(S-2\(^2\)P) is nearly the same as the excitation energy of HeB\(^{2+}\)(2\(^2\Sigma\^+\)-II). It follows that the 2s electron of boron in HeB\(^{2+}\)(2\(^2\Sigma\^+)\) is hardly disturbed by the presence of the helium atom. This indicates that the 2s electron does not significantly participate in the He-B bonding. Like the II ground state of HeBe\(^{2+}\), the II excited state of HeB\(^{2+}\) is illustrated by the potential energy curve shown in Figure 5b.

HeC\(^{2+}\): The 1\(^2\Sigma\) ground state of HeC\(^{2+}\) dissociates to He + C\(^{2+}\)(S) because the second IE of C is slightly lower than the first IE of He (Table IV). Therefore, D\(_o\) and IA values are the same for HeC\(^{2+}\)(1\(^2\Sigma\)) and HeC\(^{2+}\)(2\(^2\)S). The dominant interactions in HeC\(^{2+}\)(X\(^1\Sigma\)) involve the 2\(^2\)P LUMO of C\(^{2+}\), which is higher in energy than the 2s LUMO of He\(^{2+}\). As a consequence, HeC\(^{2+}\) has a longer (1.575 Å) and weaker (D\(_o\) = 16.8 kcal/mol) bond than HeBe\(^{2+}\)(X\(^2\Sigma\^+\)). This is parallel to what has been found for the singly charged ions HeLi\(^{2+}\) and HeB\(^{2+}\) (Table I). Although doubly charged, C\(^{2+}\) in its 1\(^2\Sigma\) ground state binds helium more weakly in (X\(^1\Sigma\)) HeC\(^{2+}\)(D\(_o\) = 17.7 kcal/mol) than singly charged C\(^{+}\) (S) does in (S) HeC\(^{+}\)(D\(_o\) = 29.3 kcal/mol; Chart I). This is a striking evidence that the electronic structure of a binding partner of He is more important than its positive charge. The 1\(^2\Sigma\) ground state of HeC\(^{2+}\) is another example for the situation shown in Figure 5a.

The II excited state of HeC\(^{2+}\) possesses a much shorter bond (1.167 Å) than the ground state. Bonding in HeC\(^{2+}\)(II) is caused...
by HOMO–SOMO interactions between the 2s (He) AO and the singly occupied 2s AO of C\(^+\) (Figure 2). The shorter bond length is in agreement with the calculated IA value for the \(X^1\) state of 67.0 kcal/mol (Table VI) indicating stronger binding in the excited state. However, unlike the ground state, the \(X^1\) excited state dissociates to He\(^+\) + C\(^+\) (Chart II) and the dissociation energy \(D_0\) is highly exothermic by \(-76.2\) kcal/mol. Thus, HeC\(^+\) in its \(X^1\) excited state is an example for the case shown in Figure 5c.

Our calculated data for the ground state and excited state of HeC\(^+\) may be compared with recent results of a CASSCF study\(^\text{10}\) of the low-lying potential energy curves of HeC\(^+\). For the \(X^1\) ground state, an equilibrium geometry of 1.566 Å and a dissociation energy \(D_0\) of 15.6 kcal/mol have been predicted. The corresponding data for the \(X^1\) excited state are \(r_e = 1.185\) Å and a negative dissociation energy of \(-84.3\) kcal/mol.\(^\text{16}\) For the \(X^1\) ground state, a theoretical study at the Hartree–Fock level\(^\text{10}\) predicts a bond length of ca. 1.587 Å and an approximate well depth of 14.3 kcal/mol. Our results presented here are in agreement with these data.

HeN\(^+\) and HeO\(^+\). The \(X^2\) state of HeN\(^+\) and \(X^2\) state of HeO\(^+\) are interpreted as the results of HOMO–LUMO interactions between the 1s A\(_0\) of He and the empty p\((\pi)\) A\(_0\) of N\(^+\) (Chart I) and the empty p\((\pi)\) A\(_0\) of O\(^+\) (Chart I), respectively. Since the energy level of the 2\(\sigma\) orbital decreases with increasing nuclear charge, stabilizing interactions also increase as is demonstrated by the IA values and interatomic distances given in Table VI. Unlike HeC\(^+\), the most favorable dissociation pathways of the ground states of HeN\(^+\) and HeO\(^+\) are the charge-separation reactions shown in Chart II. Due to the rather high second IE of N (29.601 eV\(^\text{29}\)) and O (35.116 eV\(^\text{29}\)) these dissociation reactions are highly exothermic by \(-69.7\) and \(-149.0\) kcal/mol (Table VI), respectively.

In the same way the properties of the excited states of HeN\(^+\)(\(X^2\)) and HeO\(^+\)(\(X^2\)) can be explained (Table VI). HOMO–SOMO interactions now involve the low-lying singly occupied 2s AO of X\(^2\). As a consequence, the bond lengths (\(D_0\) values) in these excited states are shorter (larger) than for the ground states. The \(r_e\) values decrease in the order X = C > N > O, while the calculated IA values increase in this order (Table VI). On the other hand, the dissociation reactions of HeN\(^+\)(\(2\Sigma^+\)) and HeO\(^+\)(\(2\Sigma^+\)) are more exothermic (Chart II) than those of the corresponding ground states. All calculated states of HeN\(^+\) and HeO\(^+\) exhibit a dissociation behavior as schematically shown in Figure 5c.

HeN\(^+\) and HeO\(^+\) have previously been studied at the Hartree–Fock level.\(^\text{10,12}\) Cooper and Wilson\(^\text{10}\) (CW) report approximate bond lengths of 1.32 and 1.06 Å for \(\Pi^1\) HeN\(^+\) and \(\Pi^2\) HeO\(^+\), respectively. They also give the potential energy curve of HeN\(^+\) which is similar to that of HeC\(^+\), i.e., an energy minimum at the equilibrium geometry and an increase in energy at longer distances. Hence, the calculated potential energy curves do not refer to the most favorable dissociation reaction, i.e., the charge-separation reaction yielding He\(^+\) + X\(^-\). CW\(^\text{10}\) give approximate well depths for HeN\(^+\) (40.0 kcal/mol) and HeO\(^+\) (60.0 kcal/mol) which roughly agree with our calculated IA values for the ground states (Table VI). Thus, the calculated potential energy curve for HeN\(^+\)(\(\Pi^2\)) and HeO\(^+\)(\(2\Sigma^+\)) at the Hartree–Fock level reported by CW leads to the wrong dissociation limit, namely, neutral He and X\(^-\). Similarly, Masse and Masse-Barlocher\(^\text{32}\) predict on the basis of Hartree–Fock calculations that the \(\Sigma^1\), \(\Sigma^2\), \(\Pi^1\), and \(\Sigma^2\) states of HeO\(^+\) are stable. Again, these authors only consider dissociation reactions which yield neutral He. All three electronic states are unstable toward dissociation into He\(^+\) + O\(^-\).

An accurate theoretical description of the dissociation of doubly charged diatomics into singly charged fragments is a notoriously difficult problem because several states of different symmetry may cross.\(^\text{24,48,49}\) Even multiconfiguration methods such as CASSCF have been questioned\(^\text{48}\) as to whether they are adequate for a quantitative treatment of the potential energy curves of dications. Although the dissociation of He\(^+\) may not pose such difficulties, the Hartree–Fock method is certainly insufficient to calculate the potential energy curve of HeX\(^+\) since it yields the wrong dissociation products. We tried to locate a transition state for the dissociation reaction of some HeX\(^+\) which dissociate into He\(^+\) + X\(^e\). We failed in several cases because of the states mentioned above. However, for (X\(^2\Sigma^+\)) HeO\(^+\) we did find a transition state for the dissociation into He\(^+(S\)) + O\(^+(S\)) (at the MP4(SDTQ)/6-311G(2df,2pd)//MP2/6-31G(d,p) + ZPE level, the activation energy is calculated as 19.8 kcal/mol at a He-O distance of 1.574 Å. Thus, HeO\(^+\) is predicted to be a metastable species that might be observable in the gas phase, for example, as the reaction product of \(\beta\)-decay of the tritium-containing cation OT\(^+\). HeF\(^+\) and HeNe\(^+\). The ground-state potential energy curves of HeF\(^+\)(X\(^2\Sigma^+\)) and HeNe\(^+\)(X\(^2\Pi\)) are calculated to be purely repulsive (Table VI). At first sight this is surprising especially in case of HeF\(^+\) because the second IE of F is even slightly lower than the corresponding value of O (Table IV). Why do the interactions of F\(^2\) with He not yield a bound ground-state minimum structure, while HeO\(^+\) in its X\(^2\Sigma^+\) ground state exhibits a rather short (1.164 Å) bond length? The answer to this lies in the different orbital interactions between He and the atomic ions O\(^2\)\(^+(P\)), F\(^2\)\(^+(P\)), and Ne\(^2\)\(^+(P\)) (Figure 2). O\(^2\)\(^+(P\)) has an empty p\((\sigma)\) AO, while the ground states of F\(^2\)\(^+(P\)) and Ne\(^2\)\(^+(P\)) possess a singly occupied 2p\((\sigma)\) orbital. HOMO–SOMO interactions with He do not suffice to yield a minimum-energy structure. Strong Coulomb repulsion in HeF\(^+\)(X\(^2\Sigma^+\)) and HeNe\(^+\)(X\(^2\Pi\)) prevents the formation of metastable species. However, those excited states of F\(^2\) and Ne\(^2\) which have an empty p\((\sigma)\) AO, i.e., the \(\Sigma^1\) and \(\Sigma^2\) state (Figure 2), do form a minimum-energy structure with He (HeF\(^+\)(\(\Pi^2\)) and HeNe\(^+\)(\(\Sigma^2\))) due to strong HOMO–LUMO interactions similar to those in HeO\(^+\)(X\(^2\Sigma^+\)) (Table 6). In agreement with this, the interatomic distances show the order HeO\(^+\)(X\(^2\Sigma^+\)) > HeF\(^+\)(X\(^2\Pi\)) > HeNe\(^+\)(X\(^2\Pi\)). For the \(\Sigma^1\) state of HeNe\(^+\), the largest interaction energy, IA, is predicted of all cations investigated here. The ground states of HeF\(^+\) and HeNe\(^+\) are further examples for the situation shown in Figure 5d, while the respective excited states are represented by Figure 5c.

Our computed data for the \(\Sigma^1\) state of HeNe\(^+\) are in excellent agreement with an SCF–CI study by Montabonel et al.\(^\text{16}\) of the potential energy curves of \(\Sigma^1\) states of HeNe\(^+\). From their data, an \(r_e\) value of ca. 1.111 Å and a negative dissociation energy of \(-209.8\) kcal/mol are predicted. However, the energy barrier for dissociation into He\(^+(S\)) + Ne\(^+(P\)) is calculated as just ca. 0.1 kcal/mol.\(^\text{16}\) This is an example where the potential energy curve is very flat, because the position of the curve crossing and the minimum energy distance of the X\(^2\)+ + Y cation are not far apart. HeNe\(^+\) in its X\(^2\) state is very unlikely to be detected in the gas phase.

Summary, Chemical Relevance, and Outlook

The systematic comparison of theoretical data for singly and doubly charged cations XeN\(^+\)* in their ground and excited states shows that their stability can be rationalized as the result of donor–acceptor interactions between neutral helium as the donor and the respective cationic fragment as the acceptor. The acceptor ability of a fragment is primarily determined by its electronic structure and not by its electronic charge or electronegativity. Knowing the properties of the LUMO of X\(^+\), qualitative predictions with regard to \(r_e\) and \(D_0\) of HeX\(^+\) can be made. Better predictions are possible by investigating the Laplace concentration of X\(^*\), which comprises the effects of all electrons and, therefore, provides reliable information on the holes in the valence shell of X\(^+\) and the resulting acceptor ability. Donor–acceptor interactions between He and the ground state of X\(^*\) lead to a van der Waals complex for singly charged X\(^+\) but to a covalently bonded ion for doubly charged X\(^2\)+. The excited states of HeX\(^+\) investigated here are all covalently bound due to increased donor–acceptor interactions. Analysis of electron density \(\rho(r)\) and energy density \(H(r)\) confirm this and provide additional insight.
into the strength of electrostatic or covalent interactions. This model of helium bonding correctly predicts trends in the bond strengths of weakly bound systems such as the ground states of HeX⁺ monocations as well as the strongly and covalently bound excited states of HeX⁺ and HeX₊⁺.

An important question concerning our theoretical results is the experimental verification of the predicted data. What is the prospect of finding experimental evidence for HeX₊⁺ cations? What experiments can be suggested to verify the theoretical predictions? Up to now, direct experimental evidence for the existence of the HeX₊⁺ cations investigated here exists only for singly charged HeC₊⁺ and HeNe₊⁺. Scattering experiments have given indirect information for the potential well of HeLi₊⁺. Also, the observation of HeF₊⁺ in a mass spectrometer has been reported, but the evidence has later been questioned. Detailed spectroscopic data are available for HeNe₊⁺ only.

Most of the experimental evidence has been gained from discharge studies of mixtures of helium and an appropriate reaction partner. In case of HeNe₊⁺, a mixture of helium and neon was used, and several excited states were observed in addition to the 2Σ⁺ ground state. Since our calculations indicate fairly strong binding for the excited states of HeX₊⁺ studied here, discharge experiments should principally be a way to produce HeX₊⁺ cations. A successful experiment has been reported for HeC₊⁺ by Young and Coggiola. Surprisingly, attempts to observe HeF₊⁺ failed, although our results predict very strong binding in the 2Σ⁺ excited state of HeF₊⁺ (46.2 kcal/mol; Table I). In their experiments using techniques of charge-transfer reactions, Berkowitz and Chappell observed HeC₊⁺ (X2Σ⁺) + 64.5 + 93.6. In their experiments using singly charged HeX₊⁺ cations as starting material. Analogous experiments have recently been performed for diatomic noble-gas ions NgX₊⁺ (X = C, N, O; n = 1, 2) for Ng = Xe, Kr, Ar, and Ne, but not for He. For neon, the singly charged cations NeC₊⁺, NeN₊⁺, and NeO₊⁺ could be produced as precursor ions via discharge experiments. Of the respective doubly charged cations NeN₊₊ was detected, but not NeC₊₊ and NeO₊₊. We suggest performing analogous experiments for the helium ions.

The results presented in this paper show that the ion chemistry of helium is rich and diverse. It comprises many interesting aspects on bonding in noble-gas compounds that can be analyzed in a

*Calculated by using the atomic ground states and excitation energies shown in Table II.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔE</th>
<th>ΔE</th>
<th>IA</th>
<th>E_fad</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeBe⁺⁺(X2Σ⁺) → He⁺(S) + Be⁺⁺(S)</td>
<td>+18.9</td>
<td>+20.1</td>
<td>+20.1</td>
<td>+30.5</td>
</tr>
<tr>
<td>HeBr⁺⁺(X2Σ⁺) → He⁺(S) + Br⁺⁺(S)</td>
<td>+15.2</td>
<td>+16.6</td>
<td>+26.8</td>
<td>+42.3</td>
</tr>
<tr>
<td>HeBr⁺⁺(S) → He⁺(S) + Br⁺⁺(P)</td>
<td>+18.6</td>
<td>+64.5</td>
<td>+67.6</td>
<td></td>
</tr>
<tr>
<td>HeC⁺⁺(X2Σ⁺) → He⁺(S) + C⁺⁺(S)</td>
<td>+16.8</td>
<td>+17.7</td>
<td>+17.7</td>
<td>+22.1</td>
</tr>
<tr>
<td>HeC⁺⁺(S) → He⁺(S) + C⁺⁺(P)</td>
<td>-76.2</td>
<td>-74.2</td>
<td>+67.0</td>
<td>+73.3</td>
</tr>
<tr>
<td>HeC⁺⁺(S) → He⁺(S) + C⁺⁺(D)</td>
<td>-69.7</td>
<td>-68.3</td>
<td>+48.2</td>
<td>+44.7</td>
</tr>
<tr>
<td>HeC⁺⁺(S) → He⁺(S) + C⁺⁺(D)</td>
<td>-148.8</td>
<td>-146.2</td>
<td>+127.9</td>
<td>+107.7</td>
</tr>
<tr>
<td>HeO⁺⁺(X2Σ⁺) → He⁺(S) + O⁺⁺(S)</td>
<td>-149.0</td>
<td>-146.6</td>
<td>+98.4</td>
<td>+74.1</td>
</tr>
<tr>
<td>HeO⁺⁺(S) → He⁺(S) + O⁺⁺(D)</td>
<td>-288.2*</td>
<td>+223.3*</td>
<td>+134.4</td>
<td></td>
</tr>
<tr>
<td>HeF⁺⁺(X2Σ⁺) → He⁺(S) + F⁺⁺(S)</td>
<td>-193.5</td>
<td>-189.7</td>
<td>+143.0*</td>
<td>+114.5</td>
</tr>
<tr>
<td>HeF⁺⁺(S) → He⁺(S) + F⁺⁺(D)</td>
<td>-211.7</td>
<td>-209.3</td>
<td>+240.1*</td>
<td>+123.1</td>
</tr>
</tbody>
</table>

(50) Using a different ion-molecule reaction, XeF⁺ was also observed.

(56) A possible explanation for this finding has been given in: Frenking, G.; Koch, W. Int. J. Mass Spectrom. Ion Processes 1988, 82, 335.
systematic manner with the aid of frontier orbital theory and the Laplace concentration.

Acknowledgment. This research has been supported by a grant from the San Diego Supercomputer Center, which provided computer time at the CRAY-XMP/48. We thank Dr. Bowen Liu for helpful discussions. D.C. thanks the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Rechenzentrum der Universität Köln for support.

Registery No. He, 7440-59-7; Li1, 17314-24-1; Be+, 14701-08-7; B+, 14539-80-0; C+, 14067-05-1; N+, 14138-23-7; O+, 14581-93-2; F+, 14701-13-4; Ne+, 14782-23-1; BHe+, 74891-40-0; CH+, 5326-54-7; HHe2+, 80896-02-2; HeO+, 12269-22-6; HeF2+, 11945-36-6; NeNe2+, 57143-65-4.

Neon and Argon Bonding in First-Row Cations NeX+ and ArX+ (X = Li–Ne)†

Gernot Frenking,*†
Molecular Research Institute, 701 Welch Road, Palo Alto, California 94304

Wolfram Koch,‡
Institut für Organische Chemie, Technische Universität Berlin, D-1000 Berlin 12, West Germany

Dieter Cremer,* Jürgen Gauss,
Institut für Organische Chemie, Universität Köln, Greinistrasse 4, D-5000 Köln 41, West Germany

and Joel F. Liebman*
Department of Chemistry, University of Maryland, Baltimore County Campus, Baltimore, Maryland 21228

(Received: August 19, 1988; In Final Form: November 7, 1988)

Theoretically determined equilibrium distances, vibrational frequencies, and dissociation energies for the first-row diatomic cations NeX+ and ArX+ (X = Li–Ne) in their ground and selected excited states are reported at the MP4(SDTQ)/6-311G(2d,2p)/MP2/6-31G(d,p) level and compared with the results for HeX+. The dissociation energies D∞ for the electronic ground states increase for a given X in the order HeX+ < NeX+ < ArX+, with the exception of X = Ne. The differences in D∞ values between NeX+ and ArX+ are significantly larger than between HeX+ and NeX+. The binding energies for NeX+ and ArX+ show a distinct maximum for X = N. The trends in the calculated dissociation energies are rationalized by invoking donor-acceptor interactions between the weak electron donors Ne and Ar, respectively, and the electron acceptor X+. For this purpose, both frontier orbitals, electron density, energy density, and Laplace concentration are investigated. The analysis of the electronic structure shows that, in the case of the relatively weak acceptors Li+, Be+, and B+, the stability of the corresponding NeX+ and ArX+ ions in the ground state is solely due to charge-induced dipole interactions. Covalent bonding, however, is predicted for the ground state of NeN+, ArC+, ArN+, ArF+, and possibly NeNe+, as well as for most excited states of NeX+ and ArX+.

Introduction

In the preceding paper, we investigated the binding interactions in first-row cations HeX+. After having established a theoretical model for helium bonding, we now present an extension of our studies to neon and argon. We report our results of a "first-row sweep" of diatomic cations NeX+ and ArX+ (X = Li–Ne) and compare them with the data for the helium analogues HeX+. The aim of this study is to find out if the donor-acceptor model, which has been proven to be very helpful in explaining He chemistry,† can also be used to rationalize the trends calculated for Ne and Ar compounds.

There are two major differences between He and the heavier analogues Ne and Ar. One is that, unlike helium, neon and argon have (filled) p orbitals in their valence shells. Therefore, π-orbital interactions with first-row elements Li–Ne in NgX+ (Ng = noble-gas element) are possible for Ng = Ne and Ar, but not He. A second difference is that the donor ability increases from He < Ne < Ar because the ionization energies (IE) become smaller (IE(He) = 24.587 eV, IE(Ne) = 21.564 eV, IE(Ar) = 15.759 eV).† While the latter effect should yield stronger bonding for Ar > Ne > He, the π-orbital interactions will depend on the occupancy of the π orbitals of the binding partner X in NgX+. If X has occupied π orbitals, there will be additional π–π repulsion in NgX+ for Ng = Ne or Ar. If X has empty π orbitals, donor-acceptor interactions should be stronger. Our study will show that binding in most (but not all!) ground states of NgX+ (Ng = He, Ne, Ar) is caused largely by long-range forces with the dominant contribution at the equilibrium distance arising from charge–induced dipole interactions. It will be seen below that the